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Summary

This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project
called “Intelligent wind power prediction systems” (FU4101). The main focus is on the models
transforming numerical weather predictions into predictions of power production. The docu-
ment also outlines the possibilities w.r.t. different numerical weather predictions actually avail-
able to the project.
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1 Introduction

This document aims at listing candidate prediction models for Work Package 3 (WP3) of the
PSO-project called “Intelligent wind power prediction systems” (FU4101). These models are
going to be used in WP5 (combined forecasting) and they may potentially influence the meth-
ods considered in WP4 (adaptive estimation). It is also natural to expect some of the model
structures to be considered in WP7 (estimation based on economic criteria).

Naturally, many candidate models and methods can be considered, including many Numerical
Weather Prediction (NWP) models. To start with the NWP models; in this project we have for
the Danish sites access to historic DMI-HIRLAM forecasts (Sass et al., 2002) and to forecasts
from the Lokalmodell of Deutscher Wetterdienst (DWD) (Schrodin et al., 2001). For DWD the
period covers full a year (1/12-2002 to 30/11-2003), for DMIthe period is much longer. For the
Spanish cite Alaiz we have access to one NWP only (also a HIRLAM model).

To some extend this limits the scope of the candidate models to the models relating the NWP
model to the power production. According to Giebel et al. (2003) these models can be sub-
divided in to physical and statistical models, see also (Landberg et al., 2003). However, as
also described by Giebel et al. (2003) models using both physical and statistical models can
presumably perform well.

Note that candidate models / methods can also be e.g. different adaptive methods or just forget-
ting factors applied to the same model structure. For an example of this see e.g. (Nielsen and
Madsen, 2000), although this reference considers heat consumption.

2 Numerical Weather Predictions

In the project we have access to Numerical Weather Predictions (NWPs) from DMI, specifically
the HIRLAM system Sass et al. (2002) and from DWD, specifically the Lokalmodell system
Schrodin et al. (2001). For Alaiz (Spain) we have access to the full ANEMOS test-case.

3 List of Models / Methods

3.1 Zephyr/Prediktor

Prediktor is system based on physical modelling, including(i) correction for height (NWP nom-
inal height compared to hub height), (ii) correction for local effects (roughness and orography),
and (iii) wind farm power curve, including wake effects. Thephysical models of Prediktor de-
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scribed in AppendixA are usually used together with Model Output Statistics (MOS) to further
fine tune the predictions. The MOS module is a very simple linear correction of the local wind
speed, to yield either minimum Mean Absolute Error or minimum Root Mean Square Error of
the power forecasts.

For combined forecasting it makes sense to use Prediktor in the following setups:

• Prediktor in standard setup (including MOS)

• Prediktor without MOS, but with an adaptive calibration of the power output.

• Prediktor applied to different NWPs for the sites where thisis available (DMI and DWD
forecasts for the Danish sites Klim and Middelgrunden).

3.2 Zephyr/WPPT

In this project we consider WPPT (Wind Power Prediction Tool), version 4. This is a complex
system which can be configured in many different ways to handle different aspects of operation
in practice; including individual wind farms, up-scaling,and regional forecasts. In this project
we focus on individual wind farms. A detailed description can be found in Appendix B.

Considering only individual wind farms WPPT employs a number of models where (i) the
direction-dependent power curve model is the central part and (ii) the output from this model
is corrected by a model taking autocorrelation and diurnal variation into account. The models
are purely data-driven and are continuously updated using the actual observations. Both models
are so-called (semi) non-parametric models and therefore the estimates are determined by a set
of constants calledbandwidthswhich must be selected. Furthermore the time-adaptivenessis
determined constants calledforgetting factors.1 Knowledge of the site under consideration can
in principle be used to guide the selection of these tuning parameters.

Combined forecasting can be applied to WPPT outputs resulting from different settings of band-
widths and forgetting factors. This can result in many inputs for the combined forecast. Expe-
rience shows that this can be a quite problem in real systems consisting of many wind farms as
e.g. the system in the Western part of Denmark. In the projectwe aim at solving this problem
by developing self-tuning methods for bandwidths and forgetting factors. Assuming this to be
possible the setups of WPPT to be used in this project only concerns the NWP input:

• WPPT applied to different NWPs for the sites where this is available (DMI and DWD
forecasts for the Danish sites Klim and Middelgrunden).

1Other parts of this project focus at making self-tuning systems which continuously make small changes to the
bandwidths and/or forgetting factors if this improves the performance.
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3.3 New reference predictor

The new reference predictor suggested by Nielsen et al. (1999) is a predictor only working
on past production values. Assuming the correlation to be known the predictor finds an opti-
mal combination between the persistent predictor and a global mean. The correlation must be
estimated based on a training set or alternatively the correlation can be estimated adaptively.

3.4 Prediction models not using meteorological input

Prediction models not using meteorological input must be based on diurnal variation and au-
tocorrelation in the power production. Actually the new reference predictor described in Sec-
tion 3.3 belongs to this class.

An additive, but general form of this model is

Pt = d(t) + zt (1)

whered(t) is a parameterization of the diurnal variation andzt is an ARMA-process. Even when
d(t) is linear in the parameters adaptive estimation in the modelis difficult to handle unless a
two-stage approach is used and{zt} is approximated by an AR-process. The two stages to the
estimation procedure is

1. Estimate the diurnal variation using OE-estimates Ljung(1987), i.e. LS-estimates ignor-
ing the correlation of{zt}.

2. Based on the residuals from the previous step; estimate the parameters of the AR-process,
possibly separately for each horizon.

There is a number of possibilities with respect to modellingof the diurnal variation. These
possibilities can be grouped in two:

1. Parametrization ofd(t) given in terms of harmonic expansions (as in WPPT), periodic
spline bases, and possibly other parameterizations.

2. Measure of the time of day. The obvious approach is to use the time of day (excluding
daylight savings). To model some of the seasonal variation more directly a measure
based on the sun height may be developed, such a measure must include information
about morning / afternoon also.

The model used in the original WPPT system ELSAM (1995) does not use meteorological
input and hence it belongs to the class of models considered in this section. Besides on-line
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measurements of the power production it use on-line measurements of the wind speed (ELSAM,
1995, Sec. 6.5.4) and therefore we can not directly use the model in this project.2

3.5 Other systems

Both Prediktor and WPPT may have some limitations w.r.t. complex terrain. In Appendix C
some ideas for new model developments are listed, but this issomewhat beyond the focus of
this project. Other possibilities would be to use model outputs from ANEMOS and develop
routines for combined forecasting based on this. This is of special interest for the Alaiz and
Klim cases which is included in both ANEMOS and in this project.

4 Conclusion

A number of candidates for inclusion into a forecasting systems based on combined forecasting
is described in this report. The most obvious are the two Zephyr systems Prediktor and WPPT
since these are well known to the participants in the project. However, historically, none of these
systems has had very much focus on horizons below 12 hours. Ittherefore also makes sense to
include methods dedicated to short term prediction as described in Sections 3.3 and 3.4.

An other approach to the investigation into combined forecasting may be to use the results from
ANEMOS and combine forecasts from these quite different systems into a forecast. Hopefully,
an adaptive procedure can be developed, whereby the combined forecast will be near-optimal
for any of the test-cases considered.

2It has been decided not to base the prediction methods on measurements of wind speed since experience
indicate that these measurements are unreliable.
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A Zephyr/Prediktor

Prediktor consists of three separate physical parts, whichare applied sequentially:

• The height correction.

• The local corrections due to roughness and orography (terrain height profile).

• The wind farm power curve including wake effects.

This text will give a short overview of all three mechanisms,and the physical considerations
behind each one of them. Additional to the physical considerations mentioned here, Prediktor
usually also employs the use of a (relatively simple) Model Output Statistics (MOS) step, if
such data is available. The physics behind Zephyr/Prediktor is based in part on the knowledge
gained in the development of the WAsP model (Wind Atlas Analysis and Application Program)
developed in the late 1980s at Risø National Laboratory. WAsP was developed to be able
to “translate” wind speed measurements made at one site to wind climates at a (nearby) site.
It does this by calculating a wind rose and distribution, then taking out the local effects that
have influenced that particular measurement, thereby creating a regional wind climate, and then
reintroducing the local effects at the site of interest (e.g. a wind turbine). The one effect WAsP
can calculate, but Prediktor usually ignores, is the effectof obstacles, as in any proper wind
farm, there are none.

A.1 The height correction

The wind speed above the surface corresponds to the following formula, the so-called logarith-
mic height profile:

u(z) =
u∗

κ
ln

(

z

z0

)

(2)

u∗ is the friction velocity,κ is the von Kármán constant (according to some theoreticalestimates
1/e, i.e. ca. 0.37) (Bergmann, 1998),z is the height above ground level (a.g.l.), andz0 is the
so-called roughness length. Conceptually, the roughness length is the length where the line
drawn by the logarithmic profile in a log-linear plot crosseszero velocity (it does not do so in
practice, since there are additional surface effects very close to the ground). The influence of the
roughness on the vertical profile can be seen in Illustration1, where all wind speeds converge
for large height outside of the planetary boundary layer to ageostrophic wind of 9 m/s.

Here is an example for the different roughness classes:
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Example of terrain corresponding to
roughness class 0:water areas. This
class comprises the sea, fjords, and lakes.
The roughness length isz0 = 0.0002m.

 
Example of terrain corresponding to
roughness class 1:open areas with few
windbreaks. The terrain appears to be very
open and is flat or gently undulating. Sin-
gle farms and stands of trees and bushes
can be found. The roughness length is
z0 = 0.03m.

 
Example of terrain corresponding to
roughness class 2:farmland with wind-
breaks, the mean separation of which ex-
ceeds 1000 m, and some scattered built-
up areas. The terrain is characterised by
large open areas between the many wind-
breaks, giving the landscape an open ap-
pearance. The terrain may be flat or undu-
lating. There are many trees and buildings.
The roughness length isz0 = 0.10m.

 
Example of terrain corresponding to
roughness class 3:urban districts, forests,
and farmland with many windbreaks. The
farmland is characterized by the many
closely spaced windbreaks, the average
separation being a few hundred meters.
Forest and urban areas also belong to this
class. The roughness length isz0 = 0.40m.

Therefore, if one has NWP (Numerical Weather Prediction) input from typically 10 m a.g.l., but
wants to scale that up to hub height, then the logarithmic profile comes up with the following
translation for the wind speeds:u(z2) = u(z1) × ln(z2/z0)/ln(z1/z0). With z1 andz2 being
the NWP level height and the hub height, respectively, this relationship comes down to one
factor depending onz0. However, the roughness length can have a fairly complex behaviour,
depending on the direction. One just has to think of coastal sites. WAsP gets a roughness map
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Illustration 1: The wind speed profile for different roughness, keeping the geostrophic wind
constant.
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or roughness rose as an input, and calculates from that an ”effective roughness length”, also
taking into account the internal boundary layers developing at roughness changes. The rule of
thumb for the upward travel of information on a roughness change is 1:100, which means that
for a 100 m turbine, roughness information from as far as 10 kmaway can be important. For
this calculation, WAsP partitions the directions into (typically) 12 sectors.

Illustration 2: The roughness rose for the Klim wind farm.

That all means that, in effect, the wind speed at a certain heightu(z2) = u(z1)× const(sect). In
other words, the variation of the wind speed for scaling the wind from one level to hub height
is linear, and only depends on the direction.

A.2 The roughness and orography corrections – The WAsP matrix

The WAsP matrix introducing the local effects also containsa roughness correction. This one
reflects the changes due to the roughness deviating from a uniform 3-cm roughness value.

The third effect of the WAsP matrix is due to the orography. Wind shows a speedup if it flows
over a hill, and also is faster offshore (ie in very low roughness). Illustration 3 shows this
principle for water to the left, and land to the right. On the land there is a mountain, and in the
sea there is an island. The graphs show the wind resource.
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Illustration 3: Power production @ 10 and 100 m a.g.l. Uniform wind rose, hill is 100 m high.
The shore is at the 6000m-line. There is an island where the locally low resource is, and a
mountain at the high resource.
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DI R           I NPUT       OBSTACLES       ROUGHNESS       OROGRAPHY       Z0

0   0. 000   0. 000   0. 000   0. 000  - 8. 000   0. 000  - 0. 135   0. 053 0. 007952

30   0. 000   0. 000   0. 000   0. 000  - 7. 552   0. 000  - 0. 038   0. 050 0. 012074

60   0. 000   0. 000   0. 000   0. 000   0. 055   0. 000  - 0. 040  - 0. 014 0. 092192

90   0. 000   0. 000   0. 000   0. 000  - 1. 814   0. 000  - 0. 099  - 0. 051 0. 072815

120   0. 000   0. 000   0. 000   0. 000  - 1. 478   0. 000  - 0. 178  - 0. 040 0. 073059

150   0. 000   0. 000   0. 000   0. 000  - 3. 428   0. 000  - 0. 193   0. 012 0. 028615

180   0. 000   0. 000   0. 000   0. 000  - 7. 282   0. 000  - 0. 125   0. 048 0. 002046

210   0. 000   0. 000   0. 000   0. 000  - 6. 222   0. 000  - 0. 036   0. 039 0. 001180

240   0. 000   0. 000   0. 000   0. 000  - 5. 219   0. 000  - 0. 007  - 0. 008 0. 011303

270   0. 000   0. 000   0. 000   0. 000  - 1. 579   0. 000  - 0. 099  - 0. 048 0. 039645

300   0. 000   0. 000   0. 000   0. 000  - 5. 063   0. 000  - 0. 174  - 0. 038 0. 017922

330   0. 000   0. 000   0. 000   0. 000  - 6. 814   0. 000  - 0. 205   0. 005 0. 015095

This matrix contains everything Prediktor uses to calculate the wind speed at hub height from
the incoming NWP wind speed: roughness corrections (only speed), orography speed-ups and
turnings, the roughness length for the height profile, and additionally the user corrections (not
used) and the corrections due to obstacles (there are no obstacles near a wind farm).

A.3 The power curve

WAsP uses a standard power curve from a manufacturer, an example is shown in Illustration 4.
This power curve can be different according to the noise level restriction or air density. How-
ever, compared with all the other uncertainties involved inshort-term predictions, these are
smaller error sources. A very practical feature of WAsP is that it comes with an extensive li-
brary of (Danish) power curves, which can be used for most projects, at least as start-up. The
differences between different companies turbines of same class and same rating are relatively
small. The most important feature to look for is the rotor diameter and the rating. Larger rotor
diameters mean that even for lower wind, there already is some production, and that the amount
of full load hours is probably higher.

Illustration 4: The power and Cp curve of the Vestas V44 used in Klim.
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A.4 Wake effects

The principle of wake effects in wind farms is shown in Illustration 5. Behind the turbine, a
wake develops, where the wind speed is reduced. This is logical, since the whole point of a
wind turbine is to draw kinetic energy (read: speed) out of the wind. This wake is getting
successively larger, and thereby gets diluted, up to the point where it vanishes. One of the
important factors here is the ambient turbulence, since this determines how coherent the wake
stays behind the turbine. The lower the ambient turbulence (eg offshore), the longer the wake
is measurable. In a typical wind farm, the wake loss is 5% or less, but in some cases, especially
in larger wind farms and in wind farms with small horizontal separation (smaller than 5 rotor
diameters between turbines), the losses can be higher.

V = U

[

1 − (1 −
√

1 − Ct)

(

D

D + 2kX

)2
]

Illustration 5: Schematic idea of wake effect model used in WAsP, and the relevant formula. k
= Wake decay constant.

From the standard power curves and the wake effects, WAsP calculates a park power curve (see
this extract of the Klim park power curve):
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Illustration 6: The Klim wind farms annual energy production and the wake losses (red) per
sector for the individual turbines.
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U/Dir      0.0    6.0   12.0   18.0   24.0   30.0   36.0   42.0 48.0   54.0   60.0   66.0   72.0   78.0   84.0   90.0 

4.0  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5.0  0.0089 0.0075 0.0075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045 0.0045 0.0045 0.0045 0.0060 0.0000 0.0000 0.0000 
6.0  0.1117 0.1129 0.0711 0.0650 0.0821 0.1184 0.1099 0.1097 0.1131 0.0768 0.0609 0.0774 0.1040 0.1126 0.1050 0.0899 
7.0  0.2022 0.2038 0.1528 0.1420 0.1634 0.2108 0.1996 0.1993 0.2034 0.1569 0.1406 0.1560 0.1917 0.2031 0.1928 0.1721 
8.0  0.3144 0.3165 0.2512 0.2367 0.2639 0.3247 0.3107 0.3103 0.3148 0.2551 0.2339 0.2539 0.2998 0.3149 0.3016 0.2750 
9.0  0.4452 0.4476 0.3714 0.3531 0.3864 0.4562 0.4403 0.4398 0.4440 0.3742 0.3482 0.3727 0.4267 0.4448 0.4296 0.3990 

10.0  0.5847 0.5870 0.5081 0.4871 0.5238 0.5947 0.5788 0.5784 0.5813 0.5086 0.4799 0.5069 0.5636 0.5830 0.5676 0.5365 
11.0  0.7189 0.7211 0.6482 0.6270 0.6628 0.7271 0.7127 0.7123 0.7139 0.6463 0.6180 0.6443 0.6975 0.7163 0.7024 0.6742 
12.0  0.8324 0.8340 0.7762 0.7575 0.7879 0.8378 0.8267 0.8264 0.8266 0.7722 0.7477 0.7703 0.8134 0.8292 0.8185 0.7966 
13.0  0.9148 0.9158 0.8792 0.8654 0.8859 0.9171 0.9104 0.9103 0.9092 0.8738 0.8565 0.8722 0.9007 0.9117 0.9050 0.8912 
14.0  0.9626 0.9631 0.9462 0.9389 0.9486 0.9631 0.9600 0.9599 0.9587 0.9421 0.9326 0.9406 0.9546 0.9604 0.9573 0.9508 
15.0  0.9867 0.9869 0.9802 0.9772 0.9806 0.9866 0.9853 0.9853 0.9843 0.9778 0.9740 0.9770 0.9827 0.9854 0.9841 0.9814 

16.0  0.9957 0.9957 0.9939 0.9930 0.9939 0.9955 0.9952 0.9952 0.9948 0.9930 0.9920 0.9927 0.9943 0.9952 0.9948 0.9941 
17.0  0.9995 0.9995 0.9988 0.9983 0.9987 0.9994 0.9993 0.9993 0.9990 0.9983 0.9979 0.9982 0.9988 0.9992 0.9991 0.9988 
18.0  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
19.0  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
20.0  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
21.0  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

A note on the park power curve: it uses as input the wind speed and direction for turbine 1. For
the other turbines, the WAsP matrix (or rather, the difference between the relative speed-ups
and other changes) is used accordingly. So the proper procedure to use this is to get the WAsP
matrix for turbine 1, and change the NWP hub height wind accordingly.

Also, take care when parsing the.dmp file: it is not always thesame length. So better parse the
wind speeds with it.

A.5 Conclusion on the full Zephyr/Prediktor

Prediktor uses three mechanisms in sequence:

•Height correction:u(zHH) = u(zNWP ) × const(sector)

•Local corrections:uloc = u(zHH) × mtx(sector)

•Park power curve:P (u, d) = const(uloc, sector)

This can be used in this project to yield a power curve analog to the one inserted above. For this,
a Prediktor module is set up, and winds from 0 to 29 m/s and from0 to 354◦ are put through it.

In the future (Illustration 7), more advanced flow models like KAMM (Karlsruhe Atmospheric
Mesoscale Model) could be substituted for WAsP, taking intoaccount a far wider range of ef-
fects on a larger scale, including channeling effects, orographic induced winds and stability
effects. In essence, there is always a step for the physical considerations, and optionally (de-
pending on the availability of measurements) some Model Output Statistics to correct for biases
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NWP

WAsP/PARK

Height correction only

WAsP/PARK/MOS

KAMM/WAsP

KAMM/WAsP/MOS

Forecast

Illustration 7: Future plans for Prediktor

etc.

A.6 The most simple power curve model

Of all these steps, most require to have access to WAsP and/ordigitized maps of the area.
However, this is not always available, so another model is proposed, building on the same
principles, but using educated guesses for most steps.

First, the height correction could be done with an estimate of the background roughness of
the site. This would not be sector dependent, and would just entail some generic background
roughness yielding a factor to be multiplied to the NWP result. As a typical default, the value
of 3cm can be used. For a more thorough analysis without actually visiting the site, there is
NASA’s WorldWind tool (http://worldwind.arc.nasa.gov/ ), which allows to see a
wind farm site in 3D including a satellite background photographed from Landsat.

Next, the step with the local corrections would be omitted.

Finally, instead of a proper park power curve, the manufacturers power curve would be used
and just multiplied by the number of turbines. The estimateddifference between this and the
full park power curve is for most farms in the order of some percent, but the difference between
the manufacturers power curve and the real-life wind turbine is often in the same order of
magnitude.

All this model needs is access to the manufacturers power curve, which in some cases can

20

http://worldwind.arc.nasa.gov/


even be replaced by a similar model (similar hub height, samerating, same rotor size) without
introducing too much additional error.
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B Zephyr/WPPT

The Zephyr/WPPT modelling system described in the following calculates predictions of the
available wind power from wind turbines in a region. For a larger region this is done by sep-
arating the region into a number of sub-areas. Wind power predictions are then calculated for
each sub-area and hereafter summarized to get a prediction for the total region.

W arW ar parpar W wf pwf

PP
wf
i,j

p̂wf
i,1

PP
ar
i,1

p̂ar
i,1

p̂to
1

PP
ar
i,2

p̂ar
i,2

p̂to
2

PP
to

p̂to

Figure 8: Overview of the model structure in Zephyr/WPPT. Two different predictions are
calculated for the wind power production in a region: In the left model branch the wind farm
models,PP wf

i,j , are used to calculate power predictions for the reference wind farms in sub-area

i. The predictions for the reference wind farms in sub-areai are summarized tôpwf
i,1 , which

hereafter is upscaled by the upscaling modelPP ar
i,1 to a power prediction,̂par

i,1, for all wind
turbines in the sub-area. The predictions for the sub-areasare then summarized to get the power
prediction of the left model branch for the total region,p̂to

1 . In the right model branch power
predictions of the power production in sub-areai, p̂ar

i,2, are calculated directly by the area model
PP ar

i,2 . The predictions for the sub-areas are then summarized to get the power prediction of the
right model branch for the total region,p̂to

2 . The final power prediction for the region,p̂to, is
calculated by model̂pto as a weighted average of the predictions from the two model branches.

The predictions are calculated using on-line production data from a number of wind farms in
the area (reference wind farms), off-line production data for the remaining wind turbines in the
area and numerical weather predictions of wind speed and wind direction covering the area. The
predictions covers a horizon corresponding to the prediction horizon of the numerical weather
predictions hours – typical from 0 to approximately 48 hoursahead in time. The time resolution
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of the predictions can be chosen freely but a reasonable choice for the longer prediction horizons
is to use the same time resolution as the numerical weather predictions.

The predictions for the total region are calculated using a two branch approach as illustrated in
figure 8.

• In the left model branch predictions of wind power are calculated for a number of ref-
erence wind farm using on-line measurements of power production as well as numerical
weather predictions as input (see Appendix B.1). The predictions from the reference
wind farms in a sub-area are summarized and hereafter upscaled to get the prediction of
power production of all wind turbines in the sub-area (see Appendix B.2). This model
branch takes advantage of the auto-correlation which is present in the power production
for prediction horizons less than approximately 12 hours.

• The right model branch predicts the power production in a sub-area explicitly by using
a model linking off-line measurements of total power production in the sub-area to the
numerical weather predictions (see Appendix B.3). This model branch takes advantage of
the smooth properties of the total production as well as the fact that the numerical weather
models perform well in predicting the weather patterns but less well in predicting the local
weather at a particular wind farm.

For both model branches the power prediction for the total region is calculated as a sum of the
predictions for the sub-areas. The final prediction of the wind power production for the total
region is then calculated as a weighted average of the predictions from the model two branches
(see Appendix B.4).

B.1 Prediction models

Conditional parametric models are used to describe the relationship between observed power
production in wind farms or areas and meteorological forecasts of wind speed and wind direc-
tion (the power curve). These relationships are difficult toparameterize explicitly, but can, as
it is shown in Nielsen et al. (2001), readily be captured by conditional parametric models. The
dynamic relationsship between observed production and predicted production from the (static)
power curve models are described using a set of linear k-steppredictions models, which are
estimated recursively and adaptively as described in Ljungand Söderström (1983), whereas the
model structure in the k-step models is identified in Nielsen(1999).

The wind farm model (PP
wf
i,j ) The wind farm model uses wind direction dependent power

curves in the transformation of forecasted wind speed and wind direction to power. The model
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for thejth wind farm in theith sub-area is given as

p̂pc
i,j(t + k) = f(wwf

i,j (t + k), θwf
i,j (t + k), k)

p̂wf
i,j (t + k) = a1p

wf
i,j (t) + a2p

vm
i,j (t − 1) + bp̂pc

i,j(t + k) +
3

∑

i=1

[cc
i cos

2iπh24(t + k)

24
+ cs

i sin
2iπh24(t + k)

24
] + m + e(t + k) (3)

wherepwf
i,j (t) is the observed power at timet, wwf

i,j (t + k) andθwf
i,j (t + k) are local forecasts

of wind speed and wind direction, respectively, andf , a, b, andh24 are time-varying model
parameters to be estimated. The difference between observed and forecasted diurnal variation
of wind speed is contain in theh24 term.

The wind farm model takes advantage of the auto-correlationwhich is present in the power
production for prediction horizons less than approximately 12 hours.

The choice of model order and input variables for each prediction horizon is described in
Nielsen (1999).

B.2 The upscaling model (PP
ar
i,1)

The predicted power production in sub-areai is calculated by multiplying the summarized
power predictions for the wind farms in the sub-area by a upscaling function, which depends on
area forecasts of wind speed and wind direction. The model isgiven as

p̂ar
i,1(t + k) =

b(war
i (t + k), θar

i (t + k), k)
∑

j

p̂wf
i,j (t + k) (4)

wherewar
i (t+k) andθar

i (t+k) are area forecasts of wind speed and wind direction, respectively,
andb is a smooth time-varying function to be estimated.

B.3 The area model (PP
ar
i,2)

The area model transforms area forecasts of wind speed and wind direction to power in a way
similar to the wind farm power curve model by explicitly linking weather forecasts for the area
to off-line observations of the power production in the area. For sub-areai the model is given
as

p̂ar
i,2(t + k) = f(war

i (t + k), θar
i (t + k), k). (5)

wheref is a smooth time-varying function to be estimated.
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This model takes advantage of the smooth properties of summarized power productions and the
fact that the numerical weather models perform well in predicting the weather patterns but less
well in predicting the local weather at a particular wind farm.

B.4 The total model (PP
to)

The prediction of the total power production in the region iscalculated using the total predic-
tions from the two model branches in figure 8. The prediction is calculated as a prediction
horizon dependent weighted average of the power predictions for the two model branches using
Root Mean Square (RMS) as weighting criterion. The model is given as

p̂to
t+k = b1(k)p̂ar

1 (t + k) + b2(k)p̂ar
2 (t + k) (6)

wherep̂ar
1 (t+k) andp̂ar

1 (t+k) are the power predictions for model branch 1 and 2, respectively,
andb1 andb2 are smooth time-varying functions to be estimated.

The predictions from the two model branches are closely correlated especially for the longer
prediction horizons. Thus a regularized estimation procedure must be used to ensure stable
estimates of theb1 and b2 functions. Here Ridge Regression Hoerl and Kennard (1970) has
been used. The weighting scheme applied here might have to bechanged following the results
of WP5 “Combined Forecasting”.
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C New models based on PPR

Marti et al. (2001) use Principal Component Regresion (PPR)(Hastie et al., 2001) to find linear
combinations of output from a NWP model wich are good at predicting the wind speed mea-
sured locally. A power curve model is then used to relate the local wind speed to the power
output.

Inspired by this procedure we propose to use Projection Pursuit Regression (PPR) (Friedman
and Stuetzle, 1981; Hastie et al., 2001) instead of PCR followed by power curve modelling. As
will be seen from the following this eliminates the need for alocal wind speed measurement
and the projection directions are chosen optimal with respect to a squared loss criterion on the
power scale.

Let Pt denote the power production at timet and letxt be a vector containing all the avilable
meteorological forecasted variable at timet. In practicex will contain a number of forecasted
variables at different model levels in a grid around the farm. The PPR model for this setup is

Pt = µ +
M

∑

m=1

βmφm(aT
mxt) + et , (7)

whereet is the model error at timet andφm(·); m = 1, . . . , M are functions to be estimated
from data. These functions are standadized to have mean zeroand unity variance over the data
used for fitting the model. Finally,am; m = 1, . . . , M are unit vectors to be estimated from
data. These vectors are directions onto which the meteorological forecasts are projected. Above
we have followed a terminology similar to the one used in (S-PLUS, 2000).

Under the restrictions outlined, given a scatter plot smoother for estimation of the functions
φm(·), and given a fititng procedure Friedman (1984) the estimatesare unique ifµ is fixed to
e.g. the overall mean of the power production. Using the function ppr in the MASS library
of S-PLUS or R (Venables and Ripley, 1999) ads the possibility of using smoothing splines for
estimation of the functionsφm(·).

Note that since the functionsφm(·) are standardized the estimates ofβm; m = 1, . . . , M can be
used as an initial guide on how many terms to included.

The procedure can also be applied to principal components ofx. However, this differs only
from the above if some of the principal components are excluded.

Handling of the wind direction requires special consideration. Marti et al. (2001) models
measuredu- and v-components of the wind separately based onu- andv-components from
HIRLAM. In this case this is not possible since we assume thatonly the power output from
the wind farm is measured. Experimentation is needed in order to identify the most appropriate
method. Below a number of observations are listed:

1. If the number of non-linear terms is high PPR can model complex interactions.
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2. If both the wind speed and itsu- andv-components are included then the projection part
of PPR can adjust the wind speed by subtracting a plane, e.g.

√
u2 + v2 − 0.1u + 0.05v.

3. To include the model of Marti et al. (2001) directly in the PPR-model note that

P = f(
√

u2 + v2) = g(u2 + v2) = g(
∑

i

aixi +
∑

i,j

bijxixj) ,

i.e. if the data is extended with quadratic terms the model ofMarti et al. (2001) is included
in the PPR approach. However, note thatx1x2 = (x1 + x2)

2 − (x1 − x2)
2 and for this

reason even when not extending the data the model of Marti et al. (2001) is included in
the PPR approach (if the number of terms is high enough).

4. A possible natural model is a power-curve multiplied by a direction dependence:

P = f(aTx) × direction dep.

log-transformation will make this model additive. However, to avoid removing the weight
from situations with high power output we must use weights when fitting the model.
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