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Summary

This document lists candidate prediction models for Worgkiage 3 (WP3) of the PSO-project
called “Intelligent wind power prediction systems” (FU430The main focus is on the models
transforming numerical weather predictions into predisi of power production. The docu-
ment also outlines the possibilities w.r.t. different nuite weather predictions actually avail-
able to the project.



1 Introduction

This document aims at listing candidate prediction modedsNork Package 3 (WP3) of the
PSO-project called “Intelligent wind power prediction ®ms” (FU4101). These models are
going to be used in WP5 (combined forecasting) and they mggnpally influence the meth-

ods considered in WP4 (adaptive estimation). It is alsomaato expect some of the model
structures to be considered in WP7 (estimation based oroauorcriteria).

Naturally, many candidate models and methods can be coedidacluding many Numerical
Weather Prediction (NWP) models. To start with the NWP medel this project we have for
the Danish sites access to historic DMI-HIRLAM forecastag$Set all, 2002) and to forecasts
from the Lokalmodell of Deutscher Wetterdienst (DWD) (Sufin et al.| 2001). For DWD the
period covers full a year (1/12-2002 to 30/11-2003), for ih# period is much longer. For the
Spanish cite Alaiz we have access to one NWP only (also a HRRIpdodel).

To some extend this limits the scope of the candidate modelset models relating the NWP
model to the power production. Accordingito Giebel et lal.0g)0these models can be sub-
divided in to physical and statistical models, see also ¢beng et al.| 2003). However, as
also described by Giebel etlal. (2003) models using bothipalyand statistical models can
presumably perform well.

Note that candidate models / methods can also be e.g. diffadaptive methods or just forget-

ting factors applied to the same model structure. For an pieaof this see e.q. (Nielsen and
Madsen|_2000), although this reference considers heatioguton.

2 Numerical Weather Predictions

In the project we have access to Numerical Weather Predg{ldWPs) from DM, specifically
the HIRLAM systenl Sass etlal. (2002) and from DWD, specifycdie Lokalmodell system
Schrodin et gl..(2001). For Alaiz (Spain) we have accessddith ANEMOS test-case.

3 List of Models / Methods

3.1 Zephyr/Prediktor

Prediktor is system based on physical modelling, includiingprrection for height (NWP nom-
inal height compared to hub height), (ii) correction fordbeffects (roughness and orography),
and (iii) wind farm power curve, including wake effects. Tpteysical models of Prediktor de-
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scribed in AppendIxA are usually used together with ModelpgbtiStatistics (MOS) to further
fine tune the predictions. The MOS module is a very simplelim®rrection of the local wind
speed, to yield either minimum Mean Absolute Error or minimioot Mean Square Error of
the power forecasts.

For combined forecasting it makes sense to use Prediktbeifotlowing setups:

e Prediktor in standard setup (including MOS)
e Prediktor without MOS, but with an adaptive calibration loé tpower output.

e Prediktor applied to different NWPs for the sites where thiavailable (DMI and DWD
forecasts for the Danish sites Klim and Middelgrunden).

3.2 Zephyr/WPPT

In this project we consider WPPT (Wind Power Prediction Toa¢rsion 4. This is a complex

system which can be configured in many different ways to readifilerent aspects of operation
in practice; including individual wind farms, up-scaliragd regional forecasts. In this project
we focus on individual wind farms. A detailed descriptiom ¢ found in AppendikB.

Considering only individual wind farms WPPT employs a numbemodels where (i) the
direction-dependent power curve model is the central padt(a) the output from this model

is corrected by a model taking autocorrelation and diuraaiation into account. The models
are purely data-driven and are continuously updated ubmgdtual observations. Both models
are so-called (semi) non-parametric models and therefierestimates are determined by a set
of constants callebandwidthswhich must be selected. Furthermore the time-adaptivaeess
determined constants calléorgetting factord] Knowledge of the site under consideration can
in principle be used to guide the selection of these tunimgrpaters.

Combined forecasting can be applied to WPPT outputs regufttbm different settings of band-

widths and forgetting factors. This can result in many isgdot the combined forecast. Expe-
rience shows that this can be a quite problem in real systemsisting of many wind farms as
e.g. the system in the Western part of Denmark. In the proyechim at solving this problem

by developing self-tuning methods for bandwidths and ftingg factors. Assuming this to be
possible the setups of WPPT to be used in this project onlgerms the NWP input:

e WPPT applied to different NWPs for the sites where this idlalse (DMI and DWD
forecasts for the Danish sites Klim and Middelgrunden).

10ther parts of this project focus at making self-tuning ey which continuously make small changes to the
bandwidths and/or forgetting factors if this improves tleefprmance.



3.3 New reference predictor

The new reference predictor suggested by Nielsenlel alS{1i8% predictor only working
on past production values. Assuming the correlation to lmwknthe predictor finds an opti-
mal combination between the persistent predictor and aafjlolean. The correlation must be
estimated based on a training set or alternatively the kediwa can be estimated adaptively.

3.4 Prediction models not using meteorological input

Prediction models not using meteorological input must beetlaon diurnal variation and au-
tocorrelation in the power production. Actually the newereince predictor described in Sec-
tion[3.3 belongs to this class.

An additive, but general form of this model is
Pt = d(t) + Zt (1)

whered(t) is a parameterization of the diurnal variation apts an ARMA-process. Even when
d(t) is linear in the parameters adaptive estimation in the misdeifficult to handle unless a
two-stage approach is used ahd} is approximated by an AR-process. The two stages to the
estimation procedure is

1. Estimate the diurnal variation using OE-estimates Lj({#87), i.e. LS-estimates ignor-
ing the correlation of z, }.

2. Based on the residuals from the previous step; estimajggitameters of the AR-process,
possibly separately for each horizon.

There is a number of possibilities with respect to modellighe diurnal variation. These
possibilities can be grouped in two:

1. Parametrization of(¢) given in terms of harmonic expansions (as in WPPT), periodic
spline bases, and possibly other parameterizations.

2. Measure of the time of day. The obvious approach is to usdirie of day (excluding
daylight savings). To model some of the seasonal variationendirectly a measure
based on the sun height may be developed, such a measurentlusiei information
about morning / afternoon also.

The model used in the original WPPT system ELSAM (1995) daztsuse meteorological
input and hence it belongs to the class of models consideréuig section. Besides on-line
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measurements of the power production it use on-line meamnts of the wind speed (ELSAM,
1995, Sec. 6.5.4) and therefore we can not directly use tliehiothis projecE

3.5 Other systems

Both Prediktor and WPPT may have some limitations w.r.t. giemterrain. In Appendix1C
some ideas for new model developments are listed, but tlssngewhat beyond the focus of
this project. Other possibilities would be to use model atggrom ANEMOS and develop
routines for combined forecasting based on this. This ispeti&l interest for the Alaiz and
Klim cases which is included in both ANEMOS and in this projec

4 Conclusion

A number of candidates for inclusion into a forecasting eyst based on combined forecasting
is described in this report. The most obvious are the two ¥egystems Prediktor and WPPT
since these are well known to the participants in the projdotvever, historically, none of these
systems has had very much focus on horizons below 12 houleréfore also makes sense to
include methods dedicated to short term prediction as thestm Sectiong313 arld’3.4.

An other approach to the investigation into combined fosgng may be to use the results from
ANEMOS and combine forecasts from these quite differentesys into a forecast. Hopefully,
an adaptive procedure can be developed, whereby the cothturecast will be near-optimal
for any of the test-cases considered.

2t has been decided not to base the prediction methods onuneeasnts of wind speed since experience
indicate that these measurements are unreliable.
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A Zephyr/Prediktor

Prediktor consists of three separate physical parts, wdrelapplied sequentially:

e The height correction.
e The local corrections due to roughness and orography ifteneaght profile).

e The wind farm power curve including wake effects.

This text will give a short overview of all three mechanisrasd the physical considerations
behind each one of them. Additional to the physical consitiens mentioned here, Prediktor
usually also employs the use of a (relatively simple) Modetgdt Statistics (MOS) step, if

such data is available. The physics behind Zephyr/Prediktoased in part on the knowledge
gained in the development of the WAsP model (Wind Atlas Asaland Application Program)

developed in the late 1980s at Risg National Laboratory. BVss developed to be able
to “translate” wind speed measurements made at one siten elimates at a (nearby) site.
It does this by calculating a wind rose and distributionntteking out the local effects that
have influenced that particular measurement, therebyicgeatregional wind climate, and then
reintroducing the local effects at the site of interest.(e.gvind turbine). The one effect WAsP
can calculate, but Prediktor usually ignores, is the eftéatbstacles, as in any proper wind
farm, there are none.

A.1 The height correction

The wind speed above the surface corresponds to the foliplenmula, the so-called logarith-

mic height profile:
u(z) = Zin (i) )
K 20

u, is the friction velocity s is the von Karman constant (according to some theoretitahates
1/e, i.e. ca. 0.37).(Bergmann, 1998)is the height above ground level (a.g.l.), ands the
so-called roughness length. Conceptually, the roughresggH is the length where the line
drawn by the logarithmic profile in a log-linear plot croszeso velocity (it does not do so in
practice, since there are additional surface effects Mesedo the ground). The influence of the
roughness on the vertical profile can be seen in lllustrdionhere all wind speeds converge
for large height outside of the planetary boundary layerdge@strophic wind of 9 m/s.

Here is an example for the different roughness classes:
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. . Example of terrain corresponding to
Example of terrain corresponding Orgughness class 1open areas with few
roughness glass O:water areas. This \yindbreaks. The terrain appears to be very
class comprises the sea, fijords, and lakessen and is flat or gently undulating. Sip-
The roughness length isy = 0.0002m. | gle farms and stands of trees and bushes
can be found. The roughness length| is
zo = 0.03m.

Exampl f terrain rr ndin . :
ample of terrain corresponding toExample of terrain corresponding to

g;zgzgetsr?ecrlssznziirrglrzggnW(I)tfhWV;]I:zg- )Eoughness class 3urban districts, forests,
ceeds ’1000 m. and gome scattered bmﬁnd farmland with many windbreaks. The
' armland is characterized by the many

up areas. The terrain is characterised|b )
losely spaced windbreaks, the average
large open areas between the many win
- Separation being a few hundred meters.
breaks, giving the landscape an open gp-

. orest and urban areas also belong to this
pearance. The terrain may be flat or undu Uiass. The rouahness lengtri 0.40
lating. There are many trees and buildings. 9 gtis= -

The roughness length 5 = 0.10m.

Therefore, if one has NWP (Numerical Weather Predictiopyitrirom typically 10 m a.g.l., but
wants to scale that up to hub height, then the logarithmiéilproomes up with the following
translation for the wind speedsi(z;) = u(z1) X In(z2/z0)/In(z1/z). With z; andz, being
the NWP level height and the hub height, respectively, thiationship comes down to one
factor depending ony,. However, the roughness length can have a fairly compleawetr,
depending on the direction. One just has to think of coagted.sSWAsSP gets a roughness map

12



50 I I I 1

45 - Geo. wind =9 m/s

30 Field, zo£0.05 m -
Water, z,=0.0002 i

Height [m]
N
3y

0 1 2 3 4 5 6 7 8
Wind Speed [m/s]

lllustration 1. The wind speed profile for different rougksgkeeping the geostrophic wind
constant.
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or roughness rose as an input, and calculates from that &tctiee roughness length”, also
taking into account the internal boundary layers develppihroughness changes. The rule of
thumb for the upward travel of information on a roughnessgeas 1:100, which means that
for a 100 m turbine, roughness information from as far as 1(alway can be important. For
this calculation, WAsP partitions the directions into (ogily) 12 sectors.

lllustration 2: The roughness rose for the Klim wind farm.

That all means that, in effect, the wind speed at a certaghiteiz;) = u(z;) x const(sect). In
other words, the variation of the wind speed for scaling tivedvirom one level to hub height
is linear, and only depends on the direction.

A.2 The roughness and orography corrections — The WAsSP matx

The WAsP matrix introducing the local effects also contanmsughness correction. This one
reflects the changes due to the roughness deviating fronf@nms-cm roughness value.

The third effect of the WAsSP matrix is due to the orographynéMshows a speedup if it flows

over a hill, and also is faster offshore (ie in very low rougbs). lllustratioril3 shows this

principle for water to the left, and land to the right. On thad there is a mountain, and in the
seathere is an island. The graphs show the wind resource.

14



lllustration 3: Power production @ 10 and 100 m a.g.l. Umrfawind rose, hill is 200 m high.
The shore is at the 6000m-line. There is an island where ttedlyolow resource is, and a
mountain at the high resource.
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DI R I NPUT CBSTACLES RCUGHNESS CRCCGRAPHY Z0

0 0. 000 0. 000 0. 000 0.000 -8.000 0.000 -0.135 0. 053 0. 007952
30 0. 000 0. 000 0. 000 0.000 -7.552 0.000 -0.038 0. 050 0.012074
60 0. 000 0. 000 0. 000 0. 000 0. 055 0.000 -0.040 -0.014 0.092192
90 0. 000 0. 000 0. 000 0.000 -1.814 0.000 -0.099 -0.051 0.072815

120 0. 000 0. 000 0. 000 0.000 -1.478 0.000 -0.178 -0.040 0.073059
150 0. 000 0. 000 0. 000 0.000 ~-3.428 0.000 -0.193 0.012 0.028615
180 0. 000 0. 000 0. 000 0.000 -7.282 0.000 -0.125 0. 048 0.002046
210 0. 000 0. 000 0. 000 0.000 -6.222 0.000 -0.036 0. 039 0.001180
240 0. 000 0. 000 0. 000 0.000 -5.219 0.000 -0.007 -0.008 0.011303
270 0. 000 0. 000 0. 000 0.000 -1.579 0.000 -0.099 -0.048 0.039645
300 0. 000 0. 000 0. 000 0.000 -5.063 0.000 -0.174 -0.038 0.017922
330 0. 000 0. 000 0. 000 0.000 -6.814 0.000 -0.205 0. 005 0.015095

This matrix contains everything Prediktor uses to caleuthe wind speed at hub height from
the incoming NWP wind speed: roughness corrections (ordgd) orography speed-ups and
turnings, the roughness length for the height profile, arditexhally the user corrections (not

used) and the corrections due to obstacles (there are nactdshear a wind farm).

A.3 The power curve

WASP uses a standard power curve from a manufacturer, anpdg@rshown in lllustratiofl4.
This power curve can be different according to the noisel lestriction or air density. How-
ever, compared with all the other uncertainties involvedhiort-term predictions, these are
smaller error sources. A very practical feature of WAsP & thcomes with an extensive li-
brary of (Danish) power curves, which can be used for mogepts, at least as start-up. The
differences between different companies turbines of sdass @and same rating are relatively
small. The most important feature to look for is the rotomagier and the rating. Larger rotor
diameters mean that even for lower wind, there already isegmaduction, and that the amount
of full load hours is probably higher.

A00 5

|:| T T T T 1
n u [m)s] 25,00

lllustration 4: The power and Cp curve of the Vestas V44 usadim.
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A.4 Wake effects

The principle of wake effects in wind farms is shown in lliagton[3. Behind the turbine, a
wake develops, where the wind speed is reduced. This isdhgmce the whole point of a
wind turbine is to draw kinetic energy (read: speed) out ef wind. This wake is getting
successively larger, and thereby gets diluted, up to thetpuanere it vanishes. One of the
important factors here is the ambient turbulence, sinedbtermines how coherent the wake
stays behind the turbine. The lower the ambient turbuleegeo{fshore), the longer the wake
is measurable. In a typical wind farm, the wake loss is 5% 8,Ibut in some cases, especially
in larger wind farms and in wind farms with small horizontaparation (smaller than 5 rotor
diameters between turbines), the losses can be higher.

IS
I
I

D Dy=D + 2kX

Turbine rotor
Turbine rotor

|
|
|
|
|
|
v

[llustration 5: Schematic idea of wake effect model used AWs¥/ and the relevant formula. k
= Wake decay constant.

From the standard power curves and the wake effects, WAsBlatds a park power curve (see
this extract of the Klim park power curve):
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E325000 4

£324500 4

£224000 4

£223C000 4

B323000 4

T T T T T
505000 50500 503000 509500 510000

lllustration 6: The Klim wind farms annual energy produactiand the wake losses (red) per
sector for the individual turbines.

18



u/Dir 0.0 6.0 12.0 18.0 24.0 30.0 36.0 420 48.0 540 60.0 66.0 72.0 78.0 84.0 90.0
4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.0 0.0089 0.0075 0.0075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045 0.0045 0.0045 0.0045 0.0060 0.0000 0.0000 0.0000
6.0 0.1117 0.1129 0.0711 0.0650 0.0821 0.1184 0.1099 0.1097 0.1131 0.0768 0.0609 0.0774 0.1040 0.1126 0.1050 0.0899
7.0 0.2022 0.2038 0.1528 0.1420 0.1634 0.2108 0.1996 0.1993 0.2034 0.1569 0.1406 0.1560 0.1917 0.2031 0.1928 0.1721
8.0 0.3144 0.3165 0.2512 0.2367 0.2639 0.3247 0.3107 0.3103 0.3148 0.2551 0.2339 0.2539 0.2998 0.3149 0.3016 0.2750
9.0 0.44520.4476 0.3714 0.3531 0.3864 0.4562 0.4403 0.4398 0.4440 0.3742 0.3482 0.3727 0.4267 0.4448 0.4296 0.3990
10.0 0.5847 0.5870 0.5081 0.4871 0.5238 0.5947 0.5788 0.5784 0.5813 0.5086 0.4799 0.5069 0.5636 0.5830 0.5676 0.5365
11.0 0.71890.7211 0.6482 0.6270 0.6628 0.7271 0.7127 0.7123 0.7139 0.6463 0.6180 0.6443 0.6975 0.7163 0.7024 0.6742
12.0 0.8324 0.83400.7762 0.7575 0.7879 0.8378 0.8267 0.8264 0.8266 0.7722 0.7477 0.7703 0.8134 0.8292 0.8185 0.7966
13.0 0.9148 0.9158 0.8792 0.8654 0.8859 0.9171 0.9104 0.9103 0.9092 0.8738 0.8565 0.8722 0.9007 0.9117 0.9050 0.8912
14.0 0.9626 0.9631 0.9462 0.9389 0.9486 0.9631 0.9600 0.9599 0.9587 0.9421 0.9326 0.9406 0.9546 0.9604 0.9573 0.9508
15.0 0.9867 0.9869 0.9802 0.9772 0.9806 0.9866 0.9853 0.9853 0.9843 0.9778 0.9740 0.9770 0.9827 0.9854 0.9841 0.9814
16.0 0.9957 0.9957 0.9939 0.9930 0.9939 0.9955 0.9952 0.9952 0.9948 0.9930 0.9920 0.9927 0.9943 0.9952 0.9948 0.9941
17.0 0.9995 0.9995 0.9988 0.9983 0.9987 0.9994 0.9993 0.9993 0.9990 0.9983 0.9979 0.9982 0.9988 0.9992 0.9991 0.9988
18.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
21.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

A note on the park power curve: it uses as input the wind speédlaection for turbine 1. For
the other turbines, the WAsSP matrix (or rather, the diffeeebetween the relative speed-ups
and other changes) is used accordingly. So the proper proeéal use this is to get the WAsP
matrix for turbine 1, and change the NWP hub height wind adiogty.

Also, take care when parsing the.dmp file: it is not alwaysstimae length. So better parse the
wind speeds with it.

A.5 Conclusion on the full Zephyr/Prediktor

Prediktor uses three mechanisms in sequence:
eHeight correctionu(zyy) = u(zywp) x const(sector)
elLocal correctionsu,. = u(zyy) x mtx(sector)

ePark power curveP(u, d) = constu,,., Sectoy

This can be used in this project to yield a power curve analdige one inserted above. For this,
a Prediktor module is set up, and winds from 0 to 29 m/s and Bdam354 are put through it.

In the future (lllustratiol7), more advanced flow modelg IkKAMM (Karlsruhe Atmospheric

Mesoscale Model) could be substituted for WAsP, taking atoount a far wider range of ef-
fects on a larger scale, including channeling effects, @poigic induced winds and stability
effects. In essence, there is always a step for the physicaiaderations, and optionally (de-
pending on the availability of measurements) some Modep@uitatistics to correct for biases
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Height correction only

WASP/PARK

NWP WASP/PARK/MQOS Forecast

KAMM/WAsP

KAMM/WAsP/MOS

lllustration 7: Future plans for Prediktor

etc.

A.6 The most simple power curve model

Of all these steps, most require to have access to WAsP adidfitized maps of the area.
However, this is not always available, so another model a@@sed, building on the same
principles, but using educated guesses for most steps.

First, the height correction could be done with an estimétthe background roughness of
the site. This would not be sector dependent, and would jusilesome generic background
roughness yielding a factor to be multiplied to the NWP res@is a typical default, the value
of 3cm can be used. For a more thorough analysis without lctuiaiting the site, there is
NASA's WorldWind tool (http://worldwind.arc.nasa.gov/ ), which allows to see a
wind farm site in 3D including a satellite background phatgahed from Landsat.

Next, the step with the local corrections would be omitted.

Finally, instead of a proper park power curve, the manufactupower curve would be used
and just multiplied by the number of turbines. The estimati#figérence between this and the
full park power curve is for most farms in the order of somecpat, but the difference between
the manufacturers power curve and the real-life wind twehsoften in the same order of
magnitude.

All this model needs is access to the manufacturers powaecwvhich in some cases can
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even be replaced by a similar model (similar hub height, saatieg, same rotor size) without
introducing too much additional error.
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B Zephyr/WPPT

The Zephyr/WPPT modelling system described in the follgagalculates predictions of the
available wind power from wind turbines in a region. For ay&rregion this is done by sep-
arating the region into a number of sub-areas. Wind powetigtiens are then calculated for
each sub-area and hereafter summarized to get a prediotitimeftotal region.

War par Wwf pwf War par
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w f
PP ﬂ

Y

PP ﬂ

ANar

Pio

)i

~to

%)

Figure 8: Overview of the model structure in Zephyr/WPPToTafferent predictions are
calculated for the wind power production in a region: In tef model branch the wind farm
modeIsPPZ.f‘;f, are used to calculate power predictions for the referenod farms in sub-area
1. The predictions for the reference wind farms in sub-araee summarized tgﬁ;‘j{, which
hereafter is upscaled by the upscaling mo&tét’] to a power predictionp{;, for all wind
turbines in the sub-area. The predictions for the sub-anesathen summarized to get the power
prediction of the left model branch for the total regigkf. In the right model branch power
predictions of the power production in sub-aieg'",, are calculated directly by the area model
PPf;. The predictions for the sub-areas are then summarized togpower prediction of the
right model branch for the total regiopy’. The final power prediction for the regiofi?, is
calculated by modei*’ as a weighted average of the predictions from the two modeidires.

The predictions are calculated using on-line productiaia d@m a number of wind farms in

the area (reference wind farms), off-line production datatie remaining wind turbines in the
area and numerical weather predictions of wind speed andla@wiaction covering the area. The
predictions covers a horizon corresponding to the premhdbiorizon of the numerical weather
predictions hours — typical from O to approximately 48 hahsad in time. The time resolution
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of the predictions can be chosen freely but a reasonableehmithe longer prediction horizons
is to use the same time resolution as the numerical weathdrqgpions.

The predictions for the total region are calculated using@atranch approach as illustrated in
figurelB.

¢ In the left model branch predictions of wind power are calted for a number of ref-
erence wind farm using on-line measurements of power ptaduas well as numerical
weather predictions as input (see AppendixIB.1). The ptiedis from the reference
wind farms in a sub-area are summarized and hereafter @asttafet the prediction of
power production of all wind turbines in the sub-area (sepefulix[B.2). This model
branch takes advantage of the auto-correlation which isgmten the power production
for prediction horizons less than approximately 12 hours.

e The right model branch predicts the power production in aaéa explicitly by using
a model linking off-line measurements of total power prdducin the sub-area to the
numerical weather predictions (see ApperidiX B.3). Thisehbdanch takes advantage of
the smooth properties of the total production as well asdbethat the numerical weather
models perform well in predicting the weather patterns &ss lell in predicting the local
weather at a particular wind farm.

For both model branches the power prediction for the towibreis calculated as a sum of the
predictions for the sub-areas. The final prediction of thedapower production for the total

region is then calculated as a weighted average of the pi@asdrom the model two branches
(see AppendikBl4).

B.1 Prediction models

Conditional parametric models are used to describe théaethip between observed power
production in wind farms or areas and meteorological fostecaf wind speed and wind direc-
tion (the power curve). These relationships are difficulppamameterize explicitly, but can, as
it is shown in_Nielsen et all (2001), readily be captured bydittonal parametric models. The
dynamic relationsship between observed production andigiesl production from the (static)
power curve models are described using a set of linear kggteglictions models, which are
estimated recursively and adaptively as described in LamthSoderstrom (1983), whereas the
model structure in the k-step models is identified in NielE999).

The wind farm model (PP;‘;.f) The wind farm model uses wind direction dependent power
curves in the transformation of forecasted wind speed and direction to power. The model
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for the jth wind farm in theith sub-area is given as

Pt +k) = flw wf(t+k),0§”]f(t+k) k)

P+ k) = apld(t) +aopl(t — 1)+ bp (e + k) +

23:[ oo ZTIEAE) | 2imh? (t + k)
C; COS ————— —_—

24 ¢ sin 24 | +m+e(t+k) (3)

=1

wherep;’; /(t) is the observed power at timgw": (t + k) and wa(t + k) are local forecasts

of wind speed and wind direction, respectlvely aficu, b, andh24 are time-varying model

parameters to be estimated. The difference between olasaneforecasted diurnal variation
of wind speed is contain in the** term.

The wind farm model takes advantage of the auto-correlatibich is present in the power
production for prediction horizons less than approximai&l hours.

The choice of model order and input variables for each ptedichorizon is described in
Nielsen (1999).

B.2 The upscaling model rs)

The predicted power production in sub-ares calculated by multiplying the summarized
power predictions for the wind farms in the sub-area by aalpsg function, which depends on
area forecasts of wind speed and wind direction. The modgven as
piat+k) =
b(w® (t + k), 097 (t + k), prf (t + k) (4)

wherew{" (t+k) andd{" (t+k) are area forecasts of wind speed and wind direction, reispiet
andb is a smooth time-varying function to be estimated.

B.3 The area model {ry)

The area model transforms area forecasts of wind speed anttidiviection to power in a way
similar to the wind farm power curve model by explicitly linky weather forecasts for the area
to off-line observations of the power production in the aréar sub-area the model is given
as

Pis(t+ k) = f(wi"(t + k), 07" (L + k), k). ()

wheref is a smooth time-varying function to be estimated.
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This model takes advantage of the smooth properties of suinedgower productions and the
fact that the numerical weather models perform well in prilg the weather patterns but less
well in predicting the local weather at a particular windfiar

B.4 The total model (pprt)

The prediction of the total power production in the regiocasculated using the total predic-
tions from the two model branches in figude 8. The predict®ralculated as a prediction
horizon dependent weighted average of the power predgfarthe two model branches using
Root Mean Square (RMS) as weighting criterion. The modeivsrgas

Piy = bi(R)P" (t + k) + ba(R)pS (¢ + k) (6)

wherep{” (t+k) andpi” (t+ k) are the power predictions for model branch 1 and 2, respgtiv
andb; andb, are smooth time-varying functions to be estimated.

The predictions from the two model branches are closelyetated especially for the longer
prediction horizons. Thus a regularized estimation praoednust be used to ensure stable
estimates of thé,; andb, functions. Here Ridge Regression Hoerl and Kernard (19@8) h
been used. The weighting scheme applied here might havediodmged following the results
of WP5 “Combined Forecasting”.
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C New models based on PPR

Marti et al. (2001) use Principal Component Regresion (RPR3tie et al., 2001) to find linear
combinations of output from a NWP model wich are good at mtety the wind speed mea-
sured locally. A power curve model is then used to relate dleallwind speed to the power
output.

Inspired by this procedure we propose to use ProjectionuRUReqgression (PPR) (Friedman
and Stuetzle, 1931; Hastie et al., 2001) instead of PCRvieltbby power curve modelling. As

will be seen from the following this eliminates the need fdoeal wind speed measurement
and the projection directions are chosen optimal with ressimea squared loss criterion on the
power scale.

Let P, denote the power production at timend letx, be a vector containing all the avilable
meteorological forecasted variable at timdn practicex will contain a number of forecasted
variables at different model levels in a grid around the fafime PPR model for this setup is
M
Py =p+ Z Bnm(alx:) + €, (7)
m=1
wheree, is the model error at timeand¢,,(-); m = 1,..., M are functions to be estimated
from data. These functions are standadized to have meamadronity variance over the data
used for fitting the model. Finally,,,; m = 1,..., M are unit vectors to be estimated from
data. These vectors are directions onto which the metegialforecasts are projected. Above
we have followed a terminology similar to the one used.in [&}€,12000).

Under the restrictions outlined, given a scatter plot sieofor estimation of the functions
om(+), and given a fitithg procedure_Friedman (11984) the estimatesinique ifu is fixed to
e.g. the overall mean of the power production. Using thetfangpr in the MASS library
of S-PLUS or Ri(\Venables and Ripley, 1999) ads the possilmfiusing smoothing splines for
estimation of the functions,,, (-).

Note that since the functions, (-) are standardized the estimatesigf m = 1,..., M can be
used as an initial guide on how many terms to included.

The procedure can also be applied to principal components ddowever, this differs only
from the above if some of the principal components are exadud

Handling of the wind direction requires special considerat [Marti_et al. (2001) models
measured:- and v-components of the wind separately baseduerand v-components from
HIRLAM. In this case this is not possible since we assume om& the power output from
the wind farm is measured. Experimentation is needed inr@odéentify the most appropriate
method. Below a number of observations are listed:

1. If the number of non-linear terms is high PPR can model deripteractions.
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2. If both the wind speed and its andv-components are included then the projection part
of PPR can adjust the wind speed by subtracting a planey@dy+ v2 — 0.1u + 0.05v.

3. To include the model of Marti et al. (2001) directly in theRmodel note that

P:f(\/u2_|_v2)—gu —|—v Zalxz—l—mexxj

i.e. if the data is extended with quadratic terms the mod®Mantti et al. (2001) is included
in the PPR approach. However, note that, = (z; + 23)* — (7, — 22)* and for this
reason even when not extending the data the mocel of Marti €2G07) is included in
the PPR approach (if the number of terms is high enough).

4. A possible natural model is a power-curve multiplied byraation dependence:
P = f(a”z) x direction dep.

log-transformation will make this model additive. Howewueravoid removing the weight
from situations with high power output we must use weightemvfitting the model.

27



	1 Introduction
	2 Numerical Weather Predictions
	3 List of Models / Methods
	3.1 Zephyr/Prediktor
	3.2 Zephyr/WPPT
	3.3 New reference predictor
	3.4 Prediction models not using meteorological input
	3.5 Other systems

	4 Conclusion
	References
	A Zephyr/Prediktor
	A.1  The height correction
	A.2  The roughness and orography corrections -- The WAsP matrix
	A.3  The power curve
	A.4  Wake effects
	A.5  Conclusion on the full Zephyr/Prediktor
	A.6  The most simple power curve model

	B Zephyr/WPPT
	B.1 Prediction models
	B.2 The upscaling model (PPi,1ar)
	B.3 The area model (PPi,2ar)
	B.4 The total model (PPto)

	C New models based on PPR

