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Preface

This report is mainly based on investigations carried out in the autumn of 2003. The
report describes the first attempt of comparing measurements (here of wind speed) with
ensemble forecasts. Three types of ensemble forecasts are considered. For one of these
(NCEP) is was discovered after completion of the work that the unperturbed forecast
with initialization time 12:00 (UTC) is actually a modified version of the other models in
this ensemble. This may explain some of the observations reported.
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1 Summary

Three types of ensemble forecasts of wind speed are compared with measurements 76m
a.g.l. Specifically, the comparisons are performed in terms of reliability (average cor-
rectness in a probabilistic sense) and resolution (sharpness of the conditional density
function). Ensembles from the experimental HIRLAM ensemble forecast system seem to
be reliable w.r.t. the upper quantiles (≥ 80%), but the number of cases is only 86 and
on average only 17.2 should exceed the 80% quantile. The resolution of the 80% quantile
is good; it varies from 1.7 to 25.7 m/s. The NCEP and ECMWF ensemble forecasts are
not reliable for the point measurement.

Since the forecasts should be interpreted as spatial averages the forecasts are adjusted
using MOS (Model Output Statistics) and then compared with the point measurements.
It is argued that the usual approach to MOS adjustment possess properties which are
somewhat in conflict with ensemble forecasting. These problems are demonstrated and
alternatives are suggested. However, for the short horizons (< 36 hours), all methods
yields adjusted ensemble forecasts for which the spread is too small. The spread of
the adjusted NCEP ensembles are in general too small. For ECMWF and HIRLAM
and horizons approximately in the range 36–60 hours some of the alternative methods
suggested yields reliable ensemble forecasts. For longer horizons the spread of the adjusted
ensemble forecasts are too wide.

Unfortunately, the methods which yields reliable ensemble forecasts have problems w.r.t.
numerical instabilities, whereby only horizons up to approximately 48 hours have good res-
olution. The report discuss ways to circumvent the numerical instabilities, which mainly
are caused by uncertainty on the unperturbed forecast and inefficient use of the measure-
ments.

2 Introduction

This report documents investigations carried out as part of the PSO-funded project
Ensemble-forecasts for wind power (FU 2101).

In meteorological ensemble forecasting several forecasts are produced and it is hoped
that these are informative w.r.t. the predictability of the actual weather situation. For
wind power applications it is not sufficient to obtain forecasts of the near-extremes; it
is necessary to be able to interpret the ensemble forecasts in a probabilistic sense. In
order to investigate the extend to which this is possible three types of ensemble forecasts
are compared with actual measurements of wind speed 76m a.g.l. from a mast at Risø
National Laboratory.
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The wind data and ensembles are briefly described in Section 4 and some background
information on the ensemble forecast systems are given in Section 3. Section 5 describes
some properties of the ensemble forecasts which can be observed in the forecast-data.
In Section 6 the forecasts and MOS adjusted versions of these are compared with the
measurements w.r.t. reliability (Section 6.1) and resolution (Section 6.2). Finally, in
Section 7, we conclude and discuss on the findings.

3 Ensemble forecasts

The investigations in this report make use of ensemble forecast data from numerical
weather prediction (NWP) models of three meteorological centres. Two of the NWP
models are global, and the third one is a limited-area model. The global ensemble pre-
diction systems have been in operation since about a decade, within which they were
continuously further developed. They are especially designed for the medium forecast
range with lead times beyond 3 days. The third ensemble is experimental and is designed
for the short range below 3 days lead time.

The ensemble prediction systems address the sensitivity of the weather development to the
initial condition by making use of perturbed initial conditions in order to account for the
uncertainty in the analysis of the atmospheric state, from which the NWP simulations for
the forecast are to be started. Common for all three ensemble prediction systems is that
they include the “unperturbed” forecast, which takes the original “best-guess” analysis
as initial condition. It is referred to as the control forecast.

In addition to the initial condition perturbation the ensemble prediction systems make use
of either different components of the NWP model or try to perturb tendencies of model
parameters in order to address uncertainties that arise during the model integration and
due to the model formulation.

Some major aspects of the ensemble prediction systems are outlined in the following
sub-sections.

3.1 NCEP ensemble forecasts

The National Center for Environmental Prediction (NCEP) and the National Weather
Service of NOAA (National Oceanic and Atmospheric Administration) in the USA have
operated an ensemble prediction system since many years [11]. It includes a global as
well as regional NWP models. The set of ensemble members consists of one unperturbed
forecast and 5 pairs of perturbed forecasts. For each pair the initial condition is perturbed
in the positive and negative direction of bred vectors [12], which are determined within
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the analysis/forecasting cycle and which are regarded to reflect the largest state changes
of the model atmosphere within the cycle time.

The ensemble system comprises model simulations in different horizontal resolutions and
with different lead times of up to 16 days. In this study, the interpolated medium range
ensemble data on a 1◦ horizontal grid are utilized with lead times up to 3.5 days.

3.2 ECMWF medium range ensemble forecasts

The European Centre for Medium-Range Weather Forecasts (ECMWF) has operated
their Ensemble prediction system1 (ECMWF-EPS) since the early 1990s [9, 6]. The set
of ensemble members consists of one unperturbed forecast and 25 pairs of forecasts, for
which the initial conditions are perturbed in the positive and negative direction of the
analysis error on basis of singular vectors [2]. The singular vectors used in the ECMWF-
EPS describe the largest growth of initial state differences in accordance with the analysis
error covariances within a time of 48 hours, in which uncertainties are assumed to grow
linearly. The initial perturbations are calculated as linear combinations of the singular
vectors such that they cover most of the global area. They are scaled such that their
amplitude is comparable to the root-mean-square analysis error of the data assimilation
system.

Furthermore, for each model run attempts are made to account for uncertainties in the
description and calculation of sub-grid processes by use of stochastic physics [1]. These
affect the model dynamics by adding a stochastic component to the tendencies from the
sub-grid parameterizations of the model. As a result two runs with the same set of initial
conditions will not result in exactly the same output.

The NWP model of the ECMWF-EPS is a global spectral model with truncation at
wave number 255 and with 40 vertical levels (TL255L40). The horizontal resolution is
comparable to that of a grid with about 80km mesh size. The ensemble simulations are
carried out operationally up to a lead time of 10 days.

3.3 HIRLAM short range ensemble forecasts

High resolution short range ensemble forecasts using the High Resolution Limited-Area
Model HIRLAM have been provided by the Danish Meteorological Institute (DMI). These
are experimental ensembles and they are based on the ECMWF-EPS. They adopt a nested
model system from a HIRLAM model setup of a previous study with HIRLAM ensembles
[10]. The forecast simulations have been performed on a grid with approximately 20km
in mesh size on a domain, which includes Danmark and the North Sea.

1http://www.ecmwf.int/products/forecasts/guide/The Ensemble Prediction System EPS.html
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In a limited-area model, the boundary conditions need to be prescribed in addition to
the initial condition. As a simple solution, the members from the ECMWF-EPS have
therefore been chosen as host model. They can supply initial perturbations with consistent
boundary data during the limited-area model simulation. Uncertainties in the initial and
in the boundary conditions are addressed this way to some extent. The frequency of
availability of the boundary data has been 6 hours. The size of this HIRLAM ensemble
is the same as that of the ECMWF-EPS, namely 50 plus the control forecast.

In addition to the ECMWF-EPS members, four further model permutations have been
integrated, too. These consist of the control simulation being integrated with different
parameterization schemes for convection and condensation in order to address model
uncertainties related to these processes. The data from these simulations were, however,
not utilized in this study.

4 Wind data and ensemble forecast data

The collection of the wind data and the ensemble forecasts (Sec. 3) has been performed
over several months. For the high resolution HIRLAM ensembles the period is limited to
comprise four months. The large scale ensemble forecasts, however, cover longer periods.
All forecast data are gridded and represented in a geographic projection. Moreover, the
grid of the HIRLAM ensembles is rotated leading to the grid area being less dependent
on the geographic position. Table 1 lists some of the major characteristica of the forecast
data used for the investigations at the Risø mast in this study.

The gridded ensemble forecast data has been interpolated horizontally to the location of
the Risø mast by bilinear interpolation between the four closest grid points. A vertical
interpolation has not been performed.

NCEP ECMWF HIRLAM 2

wind 10m a.g.l. 10m a.g.l. 10m,≈70m∗ a.g.l.

grid spacing 1◦ 0.75◦ 0.2◦

period start 01/11/2002 00:00 UTC 01/02/2003 12:00 UTC 01/12/2002 12:00 UTC

period end 04/09/2003 00:00 UTC 07/09/2003 12:00 UTC 29/03/2003 12:00 UTC

forecast initiation 00:00 and 12:00 UTC 12:00 UTC 12:00 UTC

lead time 3.5 days 7 days 3 days

data frequency 6 hours 6 hours 1 hour
∗

this data is first available from 11/01/2003

Table 1: Overview of the ensemble forecast data

Wind observations from the mast at Risø (UTM zone 32: 694197E, 6176579N) were
taken as verifying data. They include measurements of wind speed and direction at 76m

2This system is experimental. It is based on the ECMWF-EPS.
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a.g.l., and they cover the period from 31/01/2002 23:06 to 01/09/2003 10:59 (UTC).
The measurements are averages over the 10 minutes up to the time stamp, and the
ensemble forecast data are interpreted the same way. In the case of the data from the
NCEP ensembles and for the ECMWF-EPS the time step of the model simulations is
larger than the measurement interval. In the case of the HIRLAM ensembles the time
step of the model simulations is smaller than the measurement interval. The data was
therefore averaged over several time steps to represent an interval of 10 minutes. However,
some uncertainty in representation remains for all models, because the ensemble forecasts
correspond to spatial averages over the grid size of the respective model. This blurs the
picture of temporal representation, even though spatial interpolation as mentioned above
is used to obtain ensemble forecasts for the Risø mast.

5 Some properties of the ensemble forecasts

Figure 1 shows the mean and quantiles of each of the ensemble forecasts for each horizon.
Interestingly the mean and median of the NCEP analysis, i.e. forecast horizon 0 hours,
is approximately 2 m/s lower than the remaining mean values.

For ECMWF the mean and median has a cyclic behavior with peaks occurring at horizons
0, 12, 24, 36, . . . hours. For the median the distance between the top and bottom is
approximately 0.5 m/s and slightly less for the mean. Since ECMWF is only initiated
once daily this may just be a consequence of the diurnal variation. Actually, if NCEP
forecasts are split in two groups according to the initialization of calculations (00:00 and
12:00 UTC) the same kind of behavior is observed, but to a somewhat less extend (plots
not shown).

For HIRLAM within the first 12 hours, which corresponds to the time interval 12:00 –
24:00 UTC, the mean value drops from 9.5 m/s at 0 hours (12:00) to 7.2 m/s at 3 hours
(15:00). Hereafter, the mean increase to 8.0 m/s at 8 hours (19:00). Note also that
for HIRLAM the 25% and 75% quantiles seems to be in opposite phase, whereas these
quantiles seems to be in phase for ECMWF.
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Figure 1: Mean (black) and quantiles (red) of ensemble forecasts for each horizon. The
quantiles 0, 0.05, 0.25, 0.50, 0.75, 0.95, and 1 are depicted. The top row displays part of
the data in the bottom row (approx. 3-10 m/s).
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6 Comparison of ensemble forecasts with measure-

ments

For wind power production applications we are interested in interpreting the ensemble
forecast in a probabilistic sense. For example if 10 out of 50 ensemble members show wind
speeds above 10 m/s at a particular point in the future then we would like to interpret this
as a 20% chance of wind speeds above 10 m/s at that particular point in the future. If this
property holds on average for all thresholds then the ensemble forecasts are called reliable.
If an ensemble forecast system is reliable as compared to a particular measurement then
the rank of the measurement, when compared with the ensemble members, is uniformly
distributed. This can be investigated by plotting a histogram of the ranks which should be
fairly flat [13] or by Quantile-Quantile-plots (QQ-plots) [3] where the observed quantiles
are plotted against the theoretical (uniform) distribution.

However, if climatological information is available reliable (but uninformative for practical
use) ensemble forecasts can easily be produced by random sampling from the observed
distribution. Figure 2 exemplifies this by using measurements before the first NCEP
forecast as climatological information3. The obtained rank histogram is fairly flat except
that there is a slight over-representation of observations with low ranks; indicating that
the observed wind speeds after 1/11/2002 is somewhat lower than before 1/11/2002.
This is probably due to a relatively windy period in February and March, 2002. Note also
that using the empirical cumulative distribution in the left panel of Figure 2 results in a
histogram of essentially the same shape; i.e. the main features of the right panel of the
figure is not due to random variation.

The problem with the ensemble forecasts generated using climatology is that the uncer-
tainty indicated by the ensemble is high. For instance the 10% and 90% quantiles in the
left panel of Figure 2 is 3.0 and 11.3 m/s, respectively. This feature of “sharpness” of the
density indicated by the ensemble of forecasts is called resolution. The ultimate goal is
to have reliable ensemble forecasts with high resolution.

When comparing ensemble forecasts with a point measurement it should be noted that
the forecasts are forecasts of a spatial average corresponding to the horizontal resolution
of the model. The measurements at a particular point may well deviate systematically
from the spatial average.

Remark:

Here the terms reliability and resolution are for continuous variables as described above.
It seems that in the meteorological literature (e.g. [13]) these words is often used for the
more restricted case of binary variables.

3This definition of climatology is used throughout this report, it covers the period 31/01/2002 23:06
– 31/10/2002 23:57 (UTC).
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Figure 2: Left: Histogram and empirical cumulative distribution for the measurements
from the Risø mast before the first NCEP forecast (1/11/2002). Right: Rank histogram
obtained for a climatological ensemble forecast obtained by randomly picking 11 samples
in the empirical distribution at the left.

6.1 Reliability

In this section the reliability of the ensemble forecasts or ensemble forecasts adjusted
using MOS (Model Output Statistics) are investigated. In all cases only forecasts with
all members present will be considered, i.e. 11 members for NCEP and 51 members for
ECMWF and HIRLAM. The model permutations included in the HIRLAM ensembles
are not included in the investigation.

6.1.1 Unadjusted ensemble forecasts

Figures 3 and 4 show rank histograms when comparing the three ensemble forecasts to the
measurements at the Risø mast. In case of mismatch between time points observations
are generated for the forecast time points by linear interpolation between actual time
points. To account for unequal number of ensembles between ensemble types the rank is
normalized as indicated in the figures. The number of bins are selected as the default for
the function histogram in S-PLUS.

Generally, for all horizons ECMWF ensembles seem to have an over-representation of high
ranks indicating some downward bias of the forecasts as compared to the measurements.
For HIRLAM the forecasts for the low horizons are generally too high as compared to the
measurements, whereas the rank histograms are fairly flat for the longer horizons. For
NCEP, generally, there is an tendency for U-shaped rank histograms, indicating that the
spread of the ensemble forecasts are too low as compared to the measurements. However,
for the longer horizons the rank histograms corresponding to the NCEP ensembles are
fairly flat.
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Figure 3: Rank histograms for horizons up to 84 hours. Note that HIRLAM forecasts are
not available after 72 hours.
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Figure 4: ECMWF rank histograms for horizons longer than 84 hours.

Although, rank histograms give some indication of the overall reliability of the ensemble
forecasts it is unclear when the rank histograms are “sufficiently uniform”. For this
purpose we propose to use QQ-plots where the normalized rank is plotted against the
theoretical quantiles of the uniform distribution on [0, 1] (U(0, 1)). Since the cumulative
distribution function of U(0, 1) is a line connecting (0,0) and (1,1) the plots are particular
simple to interpret in this case.

Figure 5 shows QQ-plots for selected horizons. Consider e.g. the 12h NCEP ensemble
forecast; the maximum of this forecast (2nd axis at 1.0) is exceeded in approximately
40% of the cases (1.0 − 0.6 on the 1st axis). Likewise, when the 60h HIRLAM ensemble
forecast indicates that there is a 40% chance that a certain threshold will be exceeded
(1− 0.6 on the 2nd axis) then the data suggests that this threshold will only be exceeded
in approximately 20% (1 − 0.8 on the 1st axis) of the cases. Of cause, such observations
are to be regarded as estimates and as such influenced by random variation.

Besides the information gained from the rank histograms the QQ-plots adds the insight
that the HIRLAM ensembles seems to represent the upper quantiles (approximately 80%
and above) fairly well, i.e. the curves are close to the line of identity. None of the
ensemble forecast systems represent the lower quantiles well, except maybe for the 72
hour HIRLAM forecast.

Table 2 summarizes the results when comparing the 80% ensemble quantile to the actual
observations and likewise with the 80% quantile based on climatology (as defined on
page 10). It is seen that the actual number of cases is rather small. Furthermore, it
is seen that the relative frequencies of observations above the 80% ensemble quantile is
consequently lower than 20%, i.e. the 80% ensemble quantile seems seems to be too high.
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Figure 5: QQ-plots of ranks when comparing measurements with ensemble forecasts
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Due to the inherent correlations in the data not attempts has been made to formally test
hypotheses.

< 80%E ≥ 80%E % ≥ E < 80%C ≥ 80%C % ≥ C

3d 0h 0m 0s 0MS 73 13 15.1 68 18 20.9
2d 12h 0m 0s 0MS 77 9 10.5 74 12 14.0
2d 0h 0m 0s 0MS 73 13 15.1 69 17 19.8

1d 12h 0m 0s 0MS 75 11 12.8 74 12 14.0
1d 0h 0m 0s 0MS 71 15 17.4 67 19 22.1

0d 12h 0m 0s 0MS 74 12 14.0 74 12 14.0

Table 2: HIRLAM (70m): The number of cases where the observation is below (<) or
above (≥) the ensemble 80% quantile (80%E) or the climatology 80% quantile (80%C).
Also the relative frequencies of observations above the 80% quantile are displayed (% ≥ E
/ % ≥ C).

6.1.2 MOS adjusted ensemble forecasts

The results described above might well be influenced by the fact the forecasts are to be
interpreted as spatial averages and that these are compared with point measurements.
To account for systematic difference we might consider using some kind of MOS (Model
Output Statistic) adjustment.

Here it was decided to compare the measurement with the unperturbed forecast and seek
a linear transformation of the forecast. This transformation is then applied to all ensemble
members and compared to the measurements. In this case the measurements are used both
for obtaining the transformation and for calculation of ranks. Hence, the results will be
somewhat over-optimistic. Separate transformations are found for each horizon and sector
(0◦–45◦, 45◦–90◦, . . . , 315◦–360◦). The reason for estimating a transformation separately
for each horizon is that the properties of the ensemble forecast systems varies somewhat
over horizons, cf. Section 5. The reason for estimating a transformation separately for
each sector is that for the particular location the roughness varies quite significantly, e.g.
some sectors contain mostly sea surface.

Let y denote the measurement and let xfc denote the forecast. A normal MOS procedure
would then use least squares to estimate b in the model

y = b xfc + ey , (1)

where ey is the error or noise. The entire ensemble is then transformed using the estimate

b̂, whereby an MOS adjusted ensemble is obtained.

There are some problems with this approach:
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• The ranks of the point measurements as compared to the adjusted ensemble will
have a tendency of non-uniformity (too few low ranks) due to the fact that ey is
neglected.

• The forecast can be considered a noisy estimate of the spatial average x. If the
model y = b x + ey is the model in which we want to estimate b then using (1) will
result in an estimate of b biased towards zero. This will also produce a tendency of
too few low ranks.

To account for the uncertainty of the forecast we might want to add an intercept a to the
linear model (1), i.e.:

y = a + b xfc + ey . (2)

An other solution is obtained by considering the point measurement to be noise free, i.e.
only systematic deviations from the spatial average is present in the data. This leads to
a model with the forecast as the response:

xfc = α + β y + ex , (3)

where ex is the forecast error and α and β are coefficients which are estimated using least
squares. Estimates of intercept a and slope b by which to transform the ensemble forecasts
are then obtained as:

â = −α̂/β̂ and b̂ = 1/β̂ . (4)

However, in reality there may both be uncertainty on the forecast and random deviation
between the spatial average and the point measurement. Technically, model (2) should
then be treated as an errors-in-variables problem, but this requires knowledge about the
ratio between the standard deviation of the forecast error (when comparing the forecast
to the spatial average) and the standard deviation of the point measurement (the random
deviation from E(y|x) = a + b x). However, this ratio is not known and therefore we just
use orthogonal regression, which corresponds to assuming the ratio to be one.

QQ-plots of the ranks obtained when using these different possibilities are shown in Fig-
ures 6, 7, and 8. The labels used in the plots are:

“Intercept Forecast”: Linear regression including intercept and with the forecast as
the response, i.e. xfc = a + b y + ex fitted by least squares.

“Intercept Orthogonal”: Linear relation found by minimizing the sums of squares of
the (orthogonal) distances between the line (including intercept) and the data points.

“Intercept Measurement”: Linear regression including intercept and with the measure-
ment as the response, i.e. y = a + b xfc + ey fitted by least squares.

“NO intercept Forecast”: Linear regression excluding intercept and with the forecast
as the response, i.e. xfc = b y + ex fitted by least square.
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“NO intercept Measurement”: Linear regression excluding intercept and with the mea-
surement as the response, i.e. y = b xfc + ey fitted by least squares.

From the QQ-plots it is concluded that, with respect to reliability :

• None of the QQ-plots obtained for NCEP ensembles are close to the line of identity.

• For ECMWF and HIRLAM the methods labeled “Intercept Forecast” and
“Intercept Orthogonal” perform well whereas the remaining methods results in
QQ-plots deviating from the line of identity. There is a tendency of “Intercept
Forecast” performing better than “Intercept Orthogonal”.

• For the low horizons the ensemble spread is too small (S-shaped curves).

Figure 9 shows the QQ-plots for ECMWF forecasts for horizons longer than the ones
covered in the plots mentioned above. The corresponding rank histograms are displayed
in Figure 10. It is seen that the conclusions listed above are valid for the 4 day horizon
also. However, for horizons of 5 days or longer especially “Intercept Forecast” the
adjusted ensemble forecasts are too wide, i.e. there are too many ranks near the center.
Since the standard deviation of the point measurement can not depend on the forecast
horizon the results indicate that the underlying spread of the ECMWF ensemble forecast
are too wide for horizons 5 days and above.

Overall for all horizons up to 7 days the method “Intercept Orthogonal” perform well,
but for horizons up to approximately 3 days the method “Intercept Forecast” is better
in terms of reliability. The possibility exists that averaging of point measurements can
reduce the random variation and thereby improving the estimates. .
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Figure 6: QQ-plots of ranks when comparing measurements with MOS-adjusted NCEP
ensemble forecasts.
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Figure 7: QQ-plots of ranks when comparing measurements with MOS-adjusted ECMWF
ensemble forecasts.
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Figure 8: QQ-plots of ranks when comparing measurements with MOS-adjusted HIRLAM
ensemble forecasts.
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Figure 9: QQ-plots of ranks when comparing measurements with MOS-adjusted ECMWF
ensemble forecasts for horizons 4, 5, 6, and 7 days.
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Figure 10: Rank histograms when comparing measurements with MOS-adjusted ECMWF
ensemble forecasts for horizons 4, 5, 6, and 7 days.
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6.2 Resolution

As noted on page 13, the unadjusted HIRLAM ensemble forecast at 70m seems to repre-
sent the upper quantiles (80% and above) fairly well. The quantiles and the observations
are depicted in Figure 11. The climatological (page 3) 80% quantile is 9.5 m/s, whereas
the ensemble quantile ranges from 1.7 m/s to 25.7 m/s. This indicates good resolution of
the 80% HIRLAM ensemble quantile, see also Figure 12 where histograms of the quantiles
are displayed.
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Figure 11: Observations the wind speed in 76m (black) and 80% quantiles of HIRLAM
(70m) ensembles (red) for the horizons indicated on the plots. Only time points where
all members are present are included in the plots. In case of mismatch between time
points for observations and time points for forecasts linear interpolation is used to obtain
appropriate observations.

The resolution of the MOS adjusted ECMWF ensembles is considered in the following.
Also, the HIRLAM ensembles are briefly discussed. In Section 6.1 it was concluded that
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Figure 12: Histograms of the 80% HIRLAM ensemble quantile for the 70m wind speed.
The 80% climatology quantile is indicated as a dotted line and the forecast horizon is
displayed on top of each plot.

using the unperturbed forecast as the dependent variable and the point measurement
as the independent variable and including an intercept in the model (i.e. Intercept

Forecast on page 16) yielded good results w.r.t. reliability. More, specifically:

1. For horizons of 24 hours or lower the MOS adjusted ECMWF ensembles are too
narrow.

2. For horizons between 36 and 60 hours the MOS adjusted ECMWF ensembles are
reliable.

3. For horizons of 3 days or longer the MOS adjusted ECMWF ensembles are too wide.

Note that all coefficients (intercept and slope) used in the correction are found using the
same data as the data for which ranks etc. are calculated.

Since the ensembles are too narrow it does not make sense to consider the resolution of
item 1. For item 3 the resolution may still be better than for climatology and hence it
may be beneficial to consider these as reliable. The plots in Appendix A.1 shows the
MOS adjusted ensembles considered above. And in Appendix A.2 corresponding plots for
HIRLAM are included.
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It is seen that negative forecasts occur, which indicates that the linear approximation is
inappropriate at low wind speeds. However, as shown in Section 6.1 fixing the intercept
at zero does not yield reliable ensemble forecasts. Since only non-negative measurements
of wind speed are possible the reliability plots, i.e. rank histograms and QQ-plots, will
not be affected by setting negative forecasts to zero. This approach will be used below.

Also, the plots show that for some horizons numerical instability seems to occur. Closer
investigations reveal that these instabilities occur for certain sectors where the sector 180◦

– 225◦ is the one most frequently occurring. The reason for the instabilities is that β in (3)
(page 16) is estimated as being close to zero whereby the absolute values of (4), which are
used for transforming the ensembles, increase dramatically. These results indicate that
in practice more advanced methods of MOS transformation is required. One possibility
would be to estimate the coefficients in (3) as smooth functions of the wind direction
and the forecast horizon. Furthermore, all observations of the wind speed should be used.
One way to do this is to define the forecasts as continuous curves by use of e.g. linear
interpolation.

Table 3 shows the number of cases where the ensemble IQR (Inter Quantile Range)4 is
below the IQR of climatology. For the horizons mentioned in item 2 above the MOS
adjusted ensemble forecasts are reliable. It is seen that although the 60 hour (2d 12h)
forecast has numerical instable values the ensemble IQR is below the climatology IQR
in nearly 60% of the cases. For the horizons mentioned under item 3 some of the lower
horizons have near 50% cases where the ensemble IQR is lower than the climatology IQR.

For horizons 36 and 48 hours Figure 13 shows histograms of the IQR of the MOS adjusted
ECMWF ensemble compared to the IQR of the climatological distribution. The figure also
contains plots based on the MOS adjusted HIRLAM ensembles, but these are available
for a shorter period. Considering this the adjusted HIRLAM ensembles do not seem to
differ much in resolution as compared to the ECMWF ensembles.

For ECMWF it is seen that the majority of the ensemble IQR values are well below the
climatology value. This indicates a clear benefit from using the ensemble forecasts. For
the 36 hour forecast it turns out that in approximately 50% of the cases the IQR is below
2 m/s. A IQR of 2 m/s indicates that in 50% of these cases the forecast is within 1 m/s.

As mentioned in Section 6.1 the MOS adjustment of the ECMWF forecasts obtained using
orthogonal regression perform also fairly well in terms of reliability. For MOS performed
using orthogonal regression Table 4 show the number of cases where the ensemble IQR is
below the climatology IQR. Comparing with Table 3 it is clearly seen that the resolution
of the MOS-adjusted ensemble forecasts obtained using orthogonal regression is higher
than the resolution obtained using the unperturbed forecast as the dependent variable.
However, as discussed above the method primarily discussed in this section may possibly
be improved. This may be preferable due to it’s simplicity.

4The inter quantile range is the difference between the 75% and the 25% quantiles and hence is a
measure of how wide the distribution is.
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Horizon Total No. below Relative (%)

Item 1 0d 0h 212 210 99.1
0d 6h 212 211 99.5
0d 12h 212 208 98.1
0d 18h 212 207 97.6
1d 0h 212 209 98.6
1d 6h 212 195 92.0

Item 2 1d 12h 212 188 88.7
1d 18h 212 191 90.1
2d 0h 212 181 85.4
2d 6h 212 176 83.0
2d 12h 212 122 57.5

Item 3 2d 18h 212 145 68.4
3d 0h 212 104 49.1
3d 6h 212 91 42.9
3d 12h 212 83 39.2
3d 18h 212 56 26.4
4d 0h 212 51 24.1
4d 6h 212 35 16.5
4d 12h 212 7 3.3
4d 18h 212 4 1.9
5d 0h 212 1 0.5
5d 6h 212 2 0.9
5d 12h 212 0 0.0
5d 18h 212 0 0.0
6d 0h 212 0 0.0
6d 6h 212 0 0.0
6d 12h 212 0 0.0
6d 18h 212 0 0.0
7d 0h 212 0 0.0

Table 3: MOS adjustment using Intercept Forecast as defined on page 16: Number of
cases where the ensemble IQR is below the climatology IQR. The item refers to the three
groups of horizons mentioned on page 24. Note however that the groups were set up by
considering horizons only horizons 12, 24, 36, . . . hours.
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Figure 13: Histograms (counts) of ensemble IQR (MOS adjusted ECMWF/HIRLAM
with the unperturbed forecast as the dependent variable). The IQR corresponding to
climatology, as defined on page 3, is shown as a vertical line on the plot.
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Horizon Total No. below Relative (%)

Item 1 0d 0h 212 210 99.1
0d 6h 212 211 99.5
0d 12h 212 207 97.6
0d 18h 212 209 98.6
1d 0h 212 211 99.5
1d 6h 212 201 94.8

Item 2 1d 12h 212 199 93.9
1d 18h 212 198 93.4
2d 0h 212 190 89.6
2d 6h 212 193 91.0
2d 12h 212 175 82.5

Item 3 2d 18h 212 176 83.0
3d 0h 212 148 69.8
3d 6h 212 154 72.6
3d 12h 212 147 69.3
3d 18h 212 121 57.1
4d 0h 212 127 59.9
4d 6h 212 125 59.0
4d 12h 212 58 27.4
4d 18h 212 52 24.5
5d 0h 212 39 18.4
5d 6h 212 74 34.9
5d 12h 212 31 14.6
5d 18h 212 1 0.5
6d 0h 212 2 0.9
6d 6h 212 0 0.0
6d 12h 212 7 3.3
6d 18h 212 0 0.0
7d 0h 212 0 0.0

Table 4: MOS adjustment using orthogonal regression: Number of cases where the en-
semble IQR is below the climatology IQR. The item refers to the three groups of horizons
mentioned on page 24. Note however that the groups were set up by considering horizons
only horizons 12, 24, 36, . . . hours.
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7 Conclusion and Discussion

This report compares three types of ensemble forecasts of wind speed to a wind speed mea-
surement 76m a.g.l. from a mast at Risø National Laboratory, Denmark. The ensemble
forecasts considered are

• NCEP (National Centers for Environmental Prediction) ensemble forecasts from the
National Weather Service of NOAA (National Oceanic and Atmospheric Adminis-
tration) in U.S. This set of ensembles consists of one unperturbed forecast and 5
pairs of forecasts for which the initial conditions are perturbed in the positive and
negative direction of bred vectors. Horizontal resolution: 1◦.

• ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble fore-
casts from the Ensemble Prediction System5. This set of ensembles consists of one
unperturbed forecast and 25 pairs of forecasts for which the initial conditions are
perturbed in the positive and negative direction of singular vectors. Furthermore,
for each model run attempts are made to account for sub-grid processes by use
of stochastic physics [1]. As a result two runs with the same set of initial condi-
tions will not result in exactly the same output. Horizontal resolution: 75km. The
unperturbed forecast is not influenced by stochastic physics.

• HIRLAM ensembles from DMI (Danish Meteorological Institute). These are experi-
mental ensembles based on the ECMWF ensembles. Also a few model permutations
are included, but these are not used in this report. Horizontal resolution: 20km.

For NCEP and ECMWF the 10m a.g.l. wind speed and direction are used and for
HIRLAM the 70m a.g.l. wind speed and direction are used. For the analysis of the MOS
adjusted forecasts (see below) the 10m a.g.l. HIRLAM wind speed is used since more
data are available for this level. Bilinear interpolation is used to obtain forecasts valid for
the location of the mast. The period for which measurements and forecasts are available
are listed in Section 4.

In Section 5 the ensemble forecasts are investigated without comparing them to the mea-
surements. It is shown that the NCEP analysis (0 hour forecast) averaged over all en-
semble members and time points is approximately 2 m/s lower than the remaining mean
values. For ECMWF the average and quantiles over all ensemble members and time points
varies with a period of 24 hours, but since the calculations are only initiated once a day,
this may just be a consequence of the diurnal variation forecasted by the model. In fact if
the NCEP forecasts are split by initialization time the same kind of behavior is observed,
but to a lesser extent. For the HIRLAM ensembles the average drops by more than 2 m/s
within the first three hours, i.e. comparing the analysis and the 3 hour forecast. This
time interval corresponds to 12:00 to 15:00 UTC and hence the drop can not be attributed

5http://www.ecmwf.int/products/forecasts/guide/The Ensemble Prediction System EPS.html
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to diurnal variation (Denmark is one hour ahead of UTC). Consequently, there is some
indication that the bias of the forecasts depends on the horizon.

The ensemble forecasts are compared w.r.t. reliability (average correctness of the fore-
casted distributions) and resolution (sharpness of the forecasted distributions), cf. [13]
or the beginning of Section 6. When interpreting ensemble forecasts in a probabilistic
sense reliability is a requirement and resolution is an indicator of performance. In this
report reliability is addressed by use of rank histograms and QQ-plots. Rank histograms,
also called Talagrand diagrams, are useful in order to obtain an overview, but QQ-plots
(quantile-quantile-plots) are generally preferable in that they contain additional informa-
tion. As an example QQ-plots may indicate that overall a particular ensemble forecast
system is not reliable, but the upper quantiles are reliable. Only the overall conclusion
can be reached by use of rank histograms. Resolution is addressed by comparing the IQR
(Inter Quantile Range), the difference between the 75% and the 25% quantiles, with the
IQR obtained using climatological information. Here the climatological information is
obtained by simply using the available measurements with time stamps before any of the
ensemble forecasts, i.e. 9 months of measurements. See also Section 4.

When comparing the forecasts to the point measurement differences in temporal and
spatial resolution should be taken into account. Both measurements and forecasts are 10
minute averages (over the interval up to the time stamp), however the spatial resolutions
of the measurements and forecasts are very different. This may have the consequence
that (i) the point measurement may differ systematically from the (unobservable) spatial
averages although the forecasts may agree well with the spatial averages, and (ii) the point
measurement may differ non-systematically or stochastically from the spatial averages.
Using MOS (Model Output Statistics) it should be possible to correct for (i). However,
(ii) will influence the reported reliability of the ensemble forecasts, even when these are
corrected by MOS.

As expected without MOS correction none of the ensemble forecast systems are reliable
w.r.t. the measurement. Nevertheless, the upper quantiles (from 80%) of the HIRLAM
ensembles seems to be reliable, but the actual number of times in which the 80% quantile
is exceeded is very small, cf. Table 2 page 15. The 80% ensemble quantile range from 1.7
to 25.7 m/s, indicating good resolution.

If (ii) above can be neglected then some kind of MOS correction should be able to correct
for systematic differences. If further, the ensemble forecast system produce forecasts which
are reliable w.r.t. the spatial averages then the MOS adjusted ensembles should also be
reliable and this can be investigated using rank histograms or QQ-plots. In the report
different ways of performing the MOS adjustment are considered. Due to the limited
data the coefficients used for correction are determined on the same set of data as the
one for which the correction is performed. To account for a bias which may depend on
the horizon and on the sector (0◦–45◦, 45◦–90◦, . . . , 315◦–360◦) the MOS correction is
determined separately for each combination of sector and horizon.
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Usually, a linear regression through the origin with the unperturbed forecast as the in-
dependent variable and the measurement as the dependent variable is used for MOS
adjustment. However, due to the uncertainty of the forecast the estimate will be biased,
but the point predictions of the wind speed at the mast will be good in e.g. mean square
sense [5, 7, 8]. The point predictions can probably be further improved by not forcing
the linear regression through the origin. At least two reasons exists why this approach
to MOS adjustment must be expected to result in unreliable ensemble forecasts; (a) even
if the estimates are unbiased the error-term of the linear regression is not included in
the MOS adjustment, and (b) the uncertainty of the unperturbed forecast result in a
downward bias on the slope and an upward bias on the intercept. The consequence of
both (a) and (b) are that the spread of the MOS adjusted ensemble forecasts will be too
small. This is demonstrated in Section 6.1, see e.g. Figure 7 on page 19. Actually, w.r.t.
reliability it seems to be best to force the linear regression through the origin.

If there is no non-systematic difference between the point measurement (10 minute av-
erage) and the spatial average, then only the unperturbed forecast is associated with
uncertainty. Consequently, using the unperturbed forecast as the dependent variable and
the measurement as the independent variable will yield unbiased estimates.

Horizons 12, 24, 36 , ... of the MOS adjusted ensembles are checked w.r.t. reliability and
resolution. The spread of the NCEP ensembles adjusted in this way is still too small.
For ECMWF and HIRLAM the adjusted ensembles seems to be reliable for horizons 36–
60 hours, whereas the spread is too small for shorter horizons and too large for longer
horizons.

For horizons 36–48 hours the resolution is good in that the ensemble IQR, in most cases,
is smaller than the IQR corresponding to climatology. For 60 hours numerical instabilities
results in unrealistic MOS adjusted ensemble forecasts. For horizons of 60 hours or longer
QQ-plots indicate that the spread of the MOS adjusted ensemble forecasts is too large,
also for some of these horizons numerical instabilities are observed.

The cause of the numerical instabilities seems to be a rather large uncertainty of the
estimates associated with the MOS correction, cf. Section 6.2, caused by the low number
of observations in each sector and the fact that the ensemble calculations are only initiated
at 12:00 UTC. When the unperturbed forecast is rather uncertain the estimate of slope
may occasionally be close to zero, possibly just due to random variation6 and this results
in a very large slope for in the linear transformation which is used to adjust the ensemble
forecasts, cf. (4) on page 16.

To avoid the numerical instabilities the following issues should be considered:

• More effective use of the observations. One way to accomplish this is to obtain

6By swapping x and y in the regression we have replaced bias by variance. This is required since we
can not accept bias in this case.

31



forecasts for all observations, e.g. by linear interpolation, and then let the coefficients
be smooth functions of the horizon.

• More effective use of the information contained in the wind direction by modeling
the coefficients as smooth functions of the wind directions.

• Derive the MOS transformation based on a short forecast horizon and use this for
all horizons. However this is difficult, at least for HIRLAM (cf. Section 5).

If both uncertainty on the forecast and stochastic variations between the point measure-
ment and the unobservable spatial average is to be taken into account the problem must
be treated as an errors-in-variables problem [4]. This require knowledge about the ratio of
the two variances involved. The ratio is not known in this case, but orthogonal regression
has been applied which corresponds to a ratio of one. The method results in adjusted
ensemble forecasts with similar reliability as when the unperturbed forecast is used as the
dependent variable. Furthermore, the numerical instabilities of the method is somewhat
smaller.

In [13, p. 141] it is stated that for statistically stationary forecast and observation systems
and given a large enough sample, perfect reliability can be achieved by a simple statis-
tical calibration. The corresponding transformation can be obtained by fitting a smooth
function to the data on a QQ-plot, with the observed quantile/probability ((rank−1)/N)
as the explanatory variable. This transformation is then used to transform the ensemble
quantiles to agree with the observed quantiles.

Note that this transformation is solely focusing on reliability; as an extreme example, if
the ensemble forecasts are not related to the observations then the quantiles obtained are
simply quantiles in the climatological distribution. Also, in practice the transformation
can not repair any QQ-plot. As an example consider the 12h NCEP ensemble forecast for
which the QQ-plot is displayed in the lower left corner of Figure 5 on page 14. It is seen
that in approximately 20% / 40% of the cases the observation is below / above the lowest
/ highest ensemble member. There is no way to distinguish between these quantiles; the
best we can hope for is values near the center of the two extreme intervals. Consequently,
in the example, we should not expect to gain information about quantiles below 10% or
above 80%. The same kind of problems occur when many of the observations are in the
high end of the ensemble members as e.g. for ECMWF on the figure just mentioned.

Because of the above and because the transformation is not directly based on any phys-
ical aspects (e.g. spatial averages versus point measurements) we suggest that a MOS
transformation based on the unperturbed forecast is applied before the transformation
based on the QQ-plot is applied. In this setting it may not be a requirement that the
MOS adjustment is based on unbiased estimates. Hence, one solution might be to use a
standard MOS adjustment derived on basis of a low forecast horizon and then apply the
transformation based on the QQ-plots, for each horizon separately. By substituting the
MOS adjustment by the estimation of a power curve for wind farms, this points towards
a way of producing reliable wind power ensembles.
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Finally, we note that the observations mentioned in Section 5 do have consequence for
how to estimate and use a power curve model for producing ensembles of wind power.
Since we, for some setups, want an estimate without bias we might want to select the
most precise forecast for building the power curve model. If e.g. for NCEP the analysis is
selected for this purpose then using other horizons result in a large upward shift in power
production.
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Appendices

A Plots of MOS adjusted ensemble forecasts

A.1 ECMWF corrected using the unperturbed forecast as the

dependent variable.
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A.2 HIRLAM corrected using the unperturbed forecast as the

dependent variable.
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