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Summary

The purpose of the project described in this report is to develop and to investigate
methods for estimating effects of power conservation campaigns, and to estimate
the effect of a particular campaign. The statistical approach of experimental design,
followed by analysis of measurements is applied.

Using a method known as cluster analysis prior to the initiation of the campaign, a
number of substations for which measurements equipment was installed were com-
bined into groups of highest possible similarity with respect to a number of features.
It was decided to perform a campaign on a total of two substations. For this purpose
the two groups of highest similarity were selected and one substation was chosen from
each group to receive the campaign (the active substations). Since each of the two
groups contained two substations this procedure left two substations for comparisons
(the control substations).

The overall results indicate a 10-12% reduction of the power consumption when
carrying out a campaign. However, some difference is observed for the two pairs of
active and control substations. Consequently, the extrapolation to other substations
of similar kind will be difficult. When measuring the diurnal profile as the relative
deviation from the daily level during the cycle, practically no effect of the campaign
can be detected. However, the amplitude of the profile measured in units of power
consumption depends strongly on the daily level.

It is demonstrated that non-parametric and semi non-parametric methods, combined
with traditional time series analysis and bootstrapping, are well suited as statistical
tools for the analysis of data from these kinds of experiments.
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Chapter 1

Introduction

This report forms part of the documentation of the results obtained in a project
carried out by NESA A/S, Hellerup and Department of Mathematical Modelling,
Technical University of Denmark, Lyngby. The project is partly supported by the
Danish Energy Research Program under contract EFP95:1753/95-0001.

The purpose of the work described in this report is to develop and investigate meth-
ods for estimating effects of power conservation campaigns. Hereafter the methods
are used in order to assess the influence of a particular campaign on the actual
power consumption, including diurnal variation. The campaign is aimed at power
conservation in households. Due to practical and economic constraints the type of
measurements obtainable is the power consumption over 15 minutes intervals for
particular groups of households, corresponding to substations for which measure-
ment equipment already has been installed. Furthermore, the campaign can only
be applied to a very limited number of groups (two).

It is obvious that prior to the start of the trial control groups, corresponding to the
groups for which the campaign is to be applied, should be assigned. These control
groups should in ways, which are described in Chapter 2, resemble the campaign
groups.

All of the above lead to a quite limited number of candidate groups for the campaign,
and a very limited number of groups for which the campaign is actual applied.
Consequently, inferential problems arise if the results are to be extrapolated to
Danish households in general. Therefore the approach of this report will be to limit
the conclusions to the type of households for which the campaign is actual applied,
and leave it to the experienced power system professional to make extrapolations to
other types of households.

In Chapter 2 the basis of the trial is described. This includes a description of the
design of the trial, demography, climate data, and measurements of power consump-
tion at substation level. Furthermore, corrections applied to the measurements of
power consumption are considered. Chapter 3 describes the main statistical meth-
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ods used. In Chapter 4 the actual analysis of the data is described and the results
presented. Readers not interested in details about the methods used should skip
Chapter 3. Probably, besides the conclusion and discussion, some readers may want
only to read Section 4.5.2, and maybe skip the subsection on bandwidth selection.
For readers not familiar with statistical terms we mention that the 95% confidence
intervals used in Section 4.5.2 is an expression of the uncertainty of the estimates,
e.g. of the trend component, and that bootstrapping is the method we apply to
obtain these.

For the sake of cross-referencing figures, tables, and equations are numbered, al-
though not all equations have numbers. The numbers are separated by a decimal
point. The number to the left of this point is the number of the chapter in which the
figure, table, or equation is placed and the number to the right is a running number,
within the chapter and category. For appendices capital letters are used instead of
numbers.



Chapter 2

Trial Setup and Data

2.1 Setup

Prior to the startup of the trial the power consumption, during the period Septem-
ber 1995 until January 1996, of 24 substations was analyzed in order to identify
substations with similar patterns and sizes of consumption, cf. Appendix D. Here-
after it was decided to conduct the campaign at two substations. The NESA ID
numbers for these substations and their corresponding control substation are dis-
played in Table 2.1. The corresponding locations are listed in Table 2.2. Table 2.3
displays the number of households and the expected yearly power consumption for
the four substations. The expected yearly power consumption is calculated for every
household supplied by the electrical grid, as the observed consumption during the
past year adjusted for climate variations.

Type | Active | Control
0 4284 1325
1 1667 2588

Table 2.1. ID numbers for active and control substations.

ID No. | Location Year
1325 | Furesgvej 84-86, Virum 1954
1667 | Krogholmgardsvej 51, Trgrgd 1960
2588 | Havlykkevej 36, Herlev 1965
4284 | Mgrbjergvaenget near # 64, Vindinge | 1971

Table 2.2. Locations and year of establishment of the substations.
A campaign aimed at reducing the power consumption in the households was exe-

cuted in the late summer and in the fall of 1996 for the substations termed “active” in
Table 2.1. The campaign and its execution is described in details in (Sgrensen 1997).

3
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Households Other
Electrical heating
ID No. | Total | Absolute | Relative | Absolute | Relative
1325 130 6 5% 1 0.8%
1667 158 15 9% 6 3.8%
2588 219 23 11% 1 0.5%
4284 124 11 9% 4 3.2%
1325 785 141 18% 1 0.1%
1667 | 1025 219 21% 6 0.6%
2588 | 1184 321 27% 20 1.7%
4284 683 144 21% 3 0.4%

Table 2.3. Number of households (top) and expected yearly power consumption in
MWh (bottom).

In general the campaign consisted of intensive information on how to reduce the
power consumption. Furthermore, the households were given the opportunity of
switching to another tariff structure in which the cost per kW h would change de-
pending on the consumption. The number of participating households and their
yearly consumption are displayed in Table 2.4. In total 120 households were visited
for substation ID 1667 and 105 for ID 4284, and the dates of the individual visits are
displayed in Table A.2. In Figure 2.1 the fraction of the total number of households
visited is displayed.

1.0

0.8

Fraction visited
0.6

0.4

0.2

0.0

23 Aug 1996 06 Sep 1996 20 Sep 1996 04 Oct 1996

Figure 2.1. Fraction of total number of households visited for substation ID 1667
(solid) and ID 428/ (dotted).
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Number Consumption
Total | Electrical | Total | Electrical
ID No. heating heating
1667 120 12 865 205
4284 105 9 630 135
Table 2.4. Participating households: Number and expected yearly consumption in
MW h.

2.2 Climate

The climate is measured as degree days per month. The degree day values are listed
in Table A.1. In Figure 2.2 the monthly degree day values are plotted for the period
in which measurements of power consumption are available (cf. Section 2.3). For
the months July and August the degree day values are assumed to be zero.

/O’O‘O\O o0-0
5 \
\J;/ § @) / 0o-0
= o
F /
o)
8 3 / N o
> « o)
[0)
a o \ /
~
o {0-0-0" 0-0-0"
30 Jun 1995 31 Dec 1995 30 Jun 1996 31 Dec 1996

Figure 2.2. Monthly degree days during the period for which measurements of power
consumption are available.

2.3 Measurements

The power consumption for the four substation shown in Tables 2.1 and 2.2 was
recorded over 15 minutes intervals during the months July 1995 until March 1997
(including both), i.e. measurements obtained prior to the execution of the trial is
used. The unit of measurement is (KWh/h).

2.4 Preprocessing of Power Data

2.4.1 Erroneous Observations

The 15 minutes values were investigated with the aim of revealing erroneous obser-
vations, termed outliers in the following. Two methods were applied
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e Logarithm transformed simultaneous values for the four series were plotted
pairwise, yielding six scatter plots. Possible outliers were identified by in-
specting these plots. Transformed values were used to obtain ellipsis shaped
plots.

e The residuals from an ARMA(2,1) model fitted to the individual series were
investigated. Standardized residuals with an absolute value greater than or
equal to six were taken as possible outliers. The untransformed series were
used since this resulted in residuals with more constant variance, than if the
logarithm transformed series were used.

In all cases of possible outliers time series plots of the neighbor observations were
inspected in order to verify the problem. In many cases the actual problem did
occur before the corresponding possible outlier. The decisions following from this
analysis are listed in Table 2.5.

Date Substation
1325 1667 2588 4284
17 Aug. 9 13:15
26 Jul. 96 09:15
3 Oct. 96 | 09:30, 10:30 | 10:30 | 09:45, 10:45 | 11:00, 12:00
1 Nov. 96 11:00, 11:15
13 Jan. 97 12:45 09:45 11:15 10:30
21 Feb. 97 07:15

Table 2.5. Decisions related to outliers. Values corresponding to the given periods
and substations are all set to missing.

During the process of outlier, detection a special problem was noted just prior to or
after periods with missing values. The first, respectively the last, non-missing value
was often small compared to their neighbor values. It is believed that this is caused
by the data collection system failing during a 15 minute interval. For this reason
all neighbor values to periods with missing values were investigated, but no other
problems than the ones already identified were revealed.

2.4.2 Final Data Set

To reduce the size of the data set which must be handled during the analysis the data
were summed to hourly values. This seems reasonable since this will not corrupt a
diurnal variation with a morning and evening peak. Time series plots of the data
are shown in Figure 2.3, where, on the right hand side of the plots bars indicate the
range of the series with the smallest span (1325). To indicate that the data is given
in units of kKW h over the past hour, but also may be regraded as an average power
(in the sense of physical science), the unit kWh/h is used throughout this report.
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2.5 Demography

In this section some demographic data are tabulated. Table 2.6 shows the distri-
bution of income among persons, whereas Table 2.7 shows the distribution of area
among houses. In Table 2.9 cross tabulations of the number of households with
specific combinations of the number of adults and number of children are shown.
The information in the three tables mentioned so far, were produced by the Danish
statistical bureau on 18 Mar. 1996.

Furthermore, the age of the houses supplied by the substations was assessed. This
information is displayed in Table 2.8.

ID No. | 0- 74999 75000 — 149999 150000 — 224999 225000 — | No. of persons
1325 51 (19%) 32 (12%) 44 (16%) 142 (53%) 269 (100%)
1667 73 (22%) 36 (11%) 55 (16%) 170 (51%) 334 (100%)
2588 | 102 (20%) 89 (18%) 130 (26%) 186 (37%) 507 (100%)
4284 74 (23%) 41 (13%) 78 (24%) 126 (39%) 319 (100%)

Table 2.6. Number of persons (including children) with income 0 — 74999 Dkr.,
75000 — 149999 Dkr., 150000 — 224999 Dkr, or above 225000 Dkr.

IDNo. | 0-59 60-79 80-99 100-119 120 - 159 160 — | No. of houses
1325 | 1(1%) 0(0%) 4 (3%) 27 (21%) 47 (36%) 50 (39%) | 129 (100%)
1667 | 0 (0%) 0(0%) 4 (3%) 25 (16%) 75 (48%) 51 (33%) | 155 (100%)
2588 | 1(0%) 5 (2%) 20 (9%) 82 (37%) 85 (39%) 26 (12%) | 219 (100%)
4284 | 0(0%) 0(0%) 0(0%)  0(0%) 104 (87%) 15(13%) | 119 (100%)

Table 2.7. Number of houses with area 0 — 59 m?, 60 — 79 m?, 80 — 99 m?, 100 —
119 m?, 120 — 159 m?, or above 160 m?.

ID No.
1325 Around 1960-65, but also both older and newer, large and small
1667 Around 1965, a few older and newer, inhomogeneous

2588 Around 1965-70, terrace houses on Havlykkevej
4284 Around 1965-70, quite homogeneous

Table 2.8. Age and other characteristics of houses supplied by the substations.
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Substation 4284 Substation 1325
Adults Children Adults Children
Frequency Frequency
Percent Percent
Row Pct Row Pct
Col Pct 0 1 2 >3 | Total || Col Pct 0 1 2 >3 | Total
1 3 0 0 0 301 25 0 O 0 25
3 0 0 0 3 20 0 O 0 20
100 0 O 0 100 0 O 0
5 0 0 0 30 0 0 0
2 38 22 18 6 84 || 2 45 15 24 3 87
32 19 15 5 71 35 12 19 2 68
45 26 21 7 52 17 28 3
58 81 95 75 55 88 96 75
>3 24 5 1 2 32| >3 12 2 1 1 16
20 4 1 2 27 9 2 1 1 13
716 3 6 75 13 6 6
37 19 5 25 15 12 4 25
Total 65 27 19 8 119 || Total 82 17 25 4 128
55 23 16 7 100 64 13 20 3 100
Substation 1667 Substation 2588
Adults Children Adults Children
Frequency Frequency
Percent Percent
Row Pct Row Pct
Col Pct 0 1 2 >3| Total | Col Pct 0 1 2 >3] Total
1 19 0 2 0 21 || 1 25 1 0 0 26
12 0 1 0 14 12 0 0 0 12
90 0 10 0 9% 4 0 0
20 0 8 0 17 3 0 0
2 64 23 21 8 116 || 2 101 17 30 3 151
42 15 14 5 75 46 8 14 1 69
55 20 18 7 67 11 20 2
66 96 88 89 68 53 88 100
>3 14 1 1 1 17 | >3 23 14 4 0 41
9 1 1 1 11 1 6 2 0 19
82 6 6 6 56 34 10 0
14 4 4 11 15 44 12 0
Total 97 24 24 9 154 || Total 149 32 34 3 218
63 16 16 6 100 68 15 16 1 100

Table 2.9. Cross-tabulations of the number of adults and children for the four sub-
stations. The numbers are absolute and relative numbers of households, as indicated
in the top left corner of each cross-tabulation.
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Chapter 3

Statistical Methods

In this chapter the main methods used in the analysis are described. In Section 3.1
a method for decomposing a time series into trend, seasonal, and irregular compo-
nents is described. The method is very similar to the one described in (Cleveland,
Cleveland, McRae & Terpenning 1990). In Sections 3.2, 3.3, and 3.4 the fact that
the four time series of power measurements are classified according to a 2-by-2 table
is used. In Section 3.2 a simple splitting in type and campaign effects for each point
in time is described. In Section 3.3 a method in which the neighbor time points
are used in order to split the four time series in type, campaign, and interaction
effects, is presented. The method described in Section 3.4 aims at decomposing
the time series and splitting e.g. the trend component in main and interaction ef-
fects, i.e. the method is a combination of the principles of Section 3.1 and 3.3.
The decomposition methods are both closely related to additive models (Hastie &
Tibshirani 1990), which are briefly described in Section 3.5. The basic principles
of a simulation method, known as bootstrapping (Efron & Tibshirani 1993), is de-
scribed in Section 3.6 for the case of confidence interval approximation. Finally, in
Section 3.7 methods for estimating the autocorrelation function and inverse/partial
autocorrelation function for time series with missing observations are described.

We follow Hastie & Tibshirani (1990) and call a non-parametric regression function
estimator a smoother and the estimate produced by the smoother we call a smooth.

3.1 Decomposing a Time Series

This section describes a method for decomposition of a time series. A method
was chosen that results in smooth estimates of the trend component and allows for
non-stationary, but smooth, changes in the seasonal component. Furthermore, the
method allows for different seasonal components for different types of days.

The method is very similar to the STL procedure (Seasonal-Trend decomposition

11
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procedure based on Loess) described in (Cleveland et al. 1990). The STL procedure
uses locally weighted polynomial regression smoothers iteratively to decompose a
time series. For readers familiar with the STL procedure we mention that the
differences are that we apply a convergence criterion in both the inner and outer
loop. Furthermore, we do not perform the low-pass filtering of the smoothed cycle-
subseries and the post smoothing of the seasonal component. Finally, due to the
type of data, we have to allow for different seasonal components for different type
of days (weekends, working days).

The algorithm consists of an outer and an inner loop. At startup an estimate of
the trend component is calculated by smoothing the time series plot of the data,
using a large bandwidth and ignoring the seasonal component. The outer loop
down weights observations with large residuals, exactly as described in section 2.4
of (Cleveland et al. 1990). The inner loop is essentially the back-fitting algorithm
(Hastie & Tibshirani 1990). In this case it is implemented as follows

Step 1 Subtract the trend component and do seasonal smoothing (see below)
on the result.

Step 2 Detrend the seasonal component by smoothing the time series plot of
the seasonal with the same smoother as used to estimate the trend component
and subtracting the smooth from the seasonal obtained in step 1.

Step 3 Subtract the seasonal component obtained in step 2 from the data
and smooth the resulting time series as for the initial estimate of the trend
component.

Step 4 Check for convergence and go to step 1 if convergence has not been
obtained.

Let x; denote the original time series with the estimate of the trend component sub-
tracted, let h(t) denote the time of day at the running time ¢, and let d(¢) denote the
type of day corresponding to t. The seasonal smoothing is accomplished by smooth-
ing (t,z;) for each individual element of the pair (h(t),d(t)), i.e. no smoothing is
performed over neighborhood values of h(t). Consequently, the seasonal component
is allowed to change slowly.

For smoothing locally weighted polynomial regression (Cleveland & Devlin 1988)
(with fixed bandwidth, tricube window, and linear interpolation between equally
spaced points) is used. Thus, the estimates are mainly determined by (i) the span
in days of the windows used for the trend and seasonal smoother, (ii) degrees of the
polynomials fitted locally, and (iii) a user defined grouping of days. Furthermore,
the user might decide not to distinguish between days for some of the 24 hours of the
diurnal cycle. As long as the number of equally spaced points in which to calculate
the smooth is not too low it is of minor importance. We have found that 50 are
appropriate in most situations. However, small window spans require more points.
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Let C’new(tj) be the most resent estimate of the component (seasonal or trend)
evaluated in the fitting point ¢; and let éold(tj) be the corresponding value at the
second most resent iteration. For both seasonal and trend components the following
value is calculated

m?X{\CA'new(tj) - éold(tj)|}
mJaX{CA'new(tj)} — mjin{anew(tj)}

(3.1)

when these both are below a certain value the iterations in the inner loop are stopped.
Unless otherwise stated a value of 0.001, corresponding to a maximum change of
0.1%, is used. For the outer loop the outermost max in (3.1) is replaced by a
quantile calculation, where by default the 99% quantile is used.

3.2 Additive Splitting

Suppose that four time series, covering the same period of time, are available and
that these are classified according to two factors, each with two levels. In the
following these factors will be called type and campaign. For each point in time
this corresponds to a two-way analysis of variance (Devore 1991) or (Conradsen
1984), but since only one measurement is available for each combination of type and
campaign only the main effects and not the interaction can be estimated, hereof the
term “additive splitting”. The time series will be denoted by y;;; © =0,1; 7 =0,1,
with ¢ and j corresponding to type (0, 1) and campaign (O=control, 1=active),
respectively.

The factor levels must be coded. The strait forward approach would be to use 0 (no

campaign / type 0) and 1 (campaign / type 1). With this setup the design matrix
is

(3.2)

Il
O =
— -0 O

— O = O

where the first column corresponds to the level, the second to the type and the third
to the campaign effect. However, with (3.2) the estimate of the level is correlated
with the estimates of type and campaign effect. This is seen by calculating (X7X)~1.
If instead

1 -1 -1
1 -1 1

X=|, "1 _i | (3.3)
1 1 1

is used then (X7X)~! = diag{1,1,1}/4. Consequently, the estimates are uncorre-
lated. Using (3.3) estimates of the overall mean (level) u;, the type effect oy, and



14 Effect of a Power Conservation Campaign

the campaign effect [; are found as

L = ( Yoot + Your + Yior + Y11e) /4,
&y = (—%oot — Yot + Y10t + Y111)/2, (3.4)
B = (=Yoot + Yo1r — V1ot + Y111)/2,

which is seen by calculating (X”X)™'X”Y, where Y; = [yoos Yo1¢ Y10+ Y11¢)", and
observing that with (3.3) the underlying parameters corresponding to type and
campaign effects are half the actual difference, e.g. for the campaign / no campiagn
comparison. Let ¢;;x = yij — Uije- It is well known that for fixed ¢ then g;;; sums to
zero over j, and vice versa. This leaves one degree of freedom to the error, and the
model may be written as

(_1)i+1 (_1)]+1

5 Mt

Yijt = Mt + B+ (—1)'(—=1) ey, (3.5)
where go; is an estimate of e;. The estimates described above are the maximum
likelihood estimates if (i) model (3.5) is true and (ii) for fixed ¢ the observations y;;;
are normally distributed with the same variance.

If one of the effects are required to be constant for all ¢, assuming it is known, it
can be subtracted from the data. For instance if o; is required to be constant o
for all ¢ then if the second column in (3.3) is dropped and (X'X)'X*Y,, Y; =
Y;—[-a —a a «a]’/2. Tt is then seen that y; and 3; are unaffected. Consequently,
« does only affect the residuals.

3.3 Small Bandwidth Splitting Allowing for Inter-
action

If more than one observation per time series per point in time were available, then
the interaction between the effects could have been estimated. Of course, this is
impossible to obtain. Instead the neighbor points in time are used in the hope that
the changes are slow. In this case a design matrix for the whole data set are needed,
i.e. the number of rows will be four times the number of observations. Each point
in time is repeated four times and the effects are coded as described in Table 3.1.
The linear model corresponding to this design matrix is then fitted locally in time,
with local polynomial approximations of the mean, main effects, and interaction,
see (Nielsen 1997). A fixed bandwidth and tricube weight function is used.

With a design matrix as implied by Table 3.1 the estimates will be uncorrelated, if
there is no missing data values, or, if some data point is missing then data for all
four time series are missing. If the time series has length 100 and one observation
is missing, then the off-diagonal elements of (X7 X)~! (see Section 3.2) are approxi-
mately 400 times smaller than the diagonal elements, indicating almost uncorrelated
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Overall | Type | Campaign | Interaction | Time
Mean | Effect Effect Effect Series
1 -1 —1 1 {yOOt}
1 -1 1 -1 {yOIt}
1 1 -1 -1 {y10t}
1 1 1 1 {y114}

Table 3.1. Coding, when including interaction.

estimates. However, if a small bandwidth is used the estimates may locally be very
correlated, or even undefined if too few observations are available.

In order to minimize the amount of smoothing, whereby the estimates (3.4) are
closely reproduced together with the interaction, the bandwidth should be small.
For small bandwidths it will be necessary to fit the linear model locally to all points
in time for which measurements are available. If the fixed bandwidth is chosen to be
e.g. two hours the weight will become zero exactly two hours before and two hours
after the fitting point. Consequently, 3 x 4 observations will be used to estimate
the mean and the three effects. If these are approximated by first order polynomials
then the weighted least squares problem amounts to 4 x 2 estimates. For second
order polynomials the bandwidth must be increased in order to avoid a perfect fit.

3.4 ANOVA Decomposition

It is natural to combine the concepts of Sections 3.1 and 3.3 in order to split the
trend, seasonal, and remainder components into mean, type effect, campaign effect,
and interaction.

The same design matrix as described in Section 3.3 is used. Trend smoothing is
performed as described in Section 3.3, but here we use a much larger bandwidth
and thereby excluding the high frequency variations from the estimate. The seasonal
smoothing also uses the design matrix of Section 3.3 and groups the data as described
in Section 3.1. However, detrending of the seasonal components is done for the mean,
main effects, and interaction individually. Besides these differences the method is
identical to the decomposition of one time series, described in Section 3.1.

3.5 Additive Models

Additive models are regression type models in which the expected value of the
response is expressed as a sum of functions of explanatory variables, i.e.

Y = fi(x1) + fo(xi) + ... + fp(Xp) + €, (3.6)
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where ¢+ = 1,..., N is the observation number, Y; is a stochastic variable denoting
the response, f.(-) is the functions, x.; is the explanatory variables, each of which
may have dimension larger than one, and the errors e; are independently identical
distributed stochastic variables with zero mean. Hastie & Tibshirani (1990) describe
these models in detail, also in the case of non-continuous response. Some of the
functions may be of known parametric form. The parametric form must be linear in
the parameters. If some or all of the functions are unknown some assumptions must
be applied to allow estimation. As is common praxis (Hastie & Tibshirani 1990) we
will assume that the unknown functions are smooth in the sense that, locally, they
can be approximated by low-order polynomials.

Some of the explanatory variables x1,Xs,...,x, may have common elements. The
important aspect with respect to estimation is that each of the summands on the
right hand side of (3.6) relates to markedly different aspects of the expected value of
the response. Actually, the decomposition methods described in Sections 3.1 and 3.4
use the same kind of estimation method as is used when estimating in (3.6).

Estimation

Estimation in (3.6) is accomplished wusing the backfitting algorithm
(Hastie & Tibshirani 1990). This method requires initial estimates of all but one
of the functions on the right hand side of (3.6). In practice zero is often used as
an initial estimate. To update the estimate of a particular function adjusted ob-
servations of the response are generated by subtracting the latest estimates of the
remaining functions from the original observations. Hereafter the function estimate
is updated using the adjusted observations and the explanatory variables relevant
for the function under consideration. The method by which this function estimate
is updated may be linear regression, if it is a linear model, or locally weighted poly-
nomial regression (Cleveland & Devlin 1988) if it is just assumed to be smooth. As
described in (Hastie & Tibshirani 1990) also smoothing splines, or other smoothers,
could be applied. In this way each of the function estimates are updated, and the
steps are repeated until convergence.

A necessary condition for the uniqueness of the estimates is that each of the func-
tions, except one, sums to a fixed constant (zero) over the observations. This is
accomplished by subtracting the mean of the fitted values of the individual func-
tions from the estimates each time the functions are updated. Hastie & Tibshirani
(1990) requires all functions to sum to zero, but adds a constant on the right hand
side of (3.6).

According to Hastie & Tibshirani (1990) convergence can be guaranteed when using
smoothing splines. For locally weighted regression convergence is expected, when
the additive model is reasonable as compared to the design. Results presented in
this report indicate that the estimation in model (4.11), which is considered in
Section 4.5.2, does not converge for the data set used. Different convergence criteria
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may be applied. It is natural to use the maximum absolute change in each of the
function estimates from one update to the next, and requiring all these to be below
a certain value. However, we prefer to measure these changes relative to the total
range of the fitted values of the full model. The criterion is not evaluated until all
function estimates have been updated equally many times.

Since Least Squares or Weighted Least Squares are used to update the individual
functions the noise must be close to normally distributed for the estimation method
to be appropriate. However, as in linear regression, the assumption of indepent
errors is not strictly necessary, but, generally, the distributional properties described
in (Hastie & Tibshirani 1990) will not be valid if the errors are not independently
identical distributed.

Equivalent Number of Parameters

The equivalent number of parameters, or degrees of freedom, of model (3.6) is com-
plicated to calculate (Chambers & Hastie 1991, pp. 303-4). Here the same ap-
proximation as suggested in the reference just mentioned is used for the individual
functions and the sum of these individual degrees of freedom is added to form the
equivalent number of parameters.

If the function is linear in the parameters the degrees of freedom are just the number
of parameters, possibly minus one, if it is required to sum to a fixed constant over
the observations and if this assumption is not build into the structure of the linear
model. If the summand is estimated by locally weighted regression the equivalent
number of parameters is calculated as tr(L), where L is a N x N matrix denoted the
smoother matrix (Cleveland & Devlin 1988), or tr(L) — 1 if the sum of the function
values over the observations is required to be a fixed constant.

Information Criteria

When the number of unknown functions in (3.6) is small it is feasible to calculate
some information criteria values for different values of the smoothing constants;
degree of local polynomial, bandwidth, and window type (one set for each of the
unknown functions). In this report the additive model is applied in a case in which
only one unknown function is present. Furthermore, the degree of local polynomial
and window type are selected based on general considerations. Hence, only one
bandwidth has to be chosen and consequently the information criteria approach is
applicable. The following criteria, which all should be minimized, are considered.

Generalized Cross Validation (GCV), originally introduced for splines by Craven &
Wahba (1979):
N2%52
GCV=——"— 3.7
(N = 7pe)?’ (37)
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where 7, is the equivalent number of parameters of (3.6), 62 = >~ 7?/N and r;
are the residuals of the fit.

Akaike’s Information Criterion (AIC), see e.g. (Tong 1990, p. 285):

AIC = Nlog 62 + 2ny. (3.8)
Note that for N > n,. AIC approximately equals N log(GCV).
Bayesian Information Criterion (BIC) (Schwarz 1978):

BIC = Nlogé? + nyelog N. (3.9)

Originally AIC and BIC are likelihood inspired. For this reason it seems appropriate
to use 672 as defined above. Also C, (Mallows 1973) given by C,, = 5 3N, r? — N +
2nye, which actually is the criteria considered in (Cleveland & Devlin 1988), could
be used. However, it is not considered here as it is not directly applicable, because
it, in its basic form, requires knowledge of 02, the true but unknown variance of the

error.

3.6 Bootstrapping

Bootstrapping (Efron & Tibshirani 1993) is a general method mainly used to calcu-
late confidence intervals of estimates or performing hypothesis tests in cases where
other approaches are unavailable. One such example could be an additive model
(3.6) in which the errors comes from an autoregressive process, cf. Section 4.5.2. A
number of varieties of the method exists. Here we will consider bootstrapping of the
residuals with the purpose of calculating confidence intervals.

Assume that a regression type model, possibly an additive model like (3.6), has been
fitted using a particular data set. If the residuals of the fit indicate that the errors of
the model are independently identically distributed, it will be possible to generate
simulated sequences of model errors. Traditionally in bootstrapping this is done
by drawing random samples of size N, with replacement, from the residuals of the
original fit. This is equivalent to drawing samples from the empirical distribution of
the residuals.

Using the original estimates and the simulated sequences of model errors bootstrap
replicates of the dependent variable(s) can easily be generated. Hereafter the es-
timation procedure is carried out for each of the replicates, yielding a number of
bootstrap replicates of the estimates. These may be regarded as possible values of
the estimates if the model error follow the distribution function used for random
sampling, and if the true system is described by the model and the estimates. Con-
sequently, it is possible to use the bootstrap replicates to obtain confidence intervals
of the estimates. Precisely how to do this depends on the distributional properties.
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If the estimates are identically normally distributed, the most efficient way will be
to use the mean and standard deviation of the bootstrap replicates of the estimates,
Efron & Tibshirani (1993) denotes this standard normal intervals. If the assumption
is doubtful the BC, or ABC method of Efron & Tibshirani (1993) is often applied.
However, these methods are infeasible for the work described in this report, cf. Sec-
tion 4.5.2 and (Efron & Tibshirani 1993). Consequently, the percentile intervals is
the only remaining standard method mentioned in (Efron & Tibshirani 1993) which
can be applied in case of non-normality of the estimates. Since this method uses
the empirical quantiles only it is uncertain when the desired coverage probability of
the confidence interval is close to one, e.g. if 1000 replicates are generated a 95%
confidence interval based on the percentile method will be determined by the 25
smallest and 25 largest values.

Generally, the precision of the bootstrap results increases with the number of boot-
strap replicates. However, the limiting factor is time, including CPU-time. Also,
the appropriate number of bootstrap replicates depend strongly on the normality
assumption, and hence it should be considered separately for each application.

3.7 Sample ACF, PACF, and TACF When Some
Observations Are Missing.

This section describes how missing observations are treated when estimating the au-
tocovariance/correlation function (ACF), the partial autocorrelation function, and
the inverse autocorrelation function. The approach described in (Madsen 1995) is
used, but the actual formulas are changed slightly to make the estimators produce
the usual estimates in the case of no missing observations.

The autocorrelation function

Let x1,Zs,...,xy be the observations from the process {X;}, where some observa-
tions may be missing. Define

{ 0, if x; is missing
ay =

1, otherwise (3.10)

Using the temporary quantities

1 N-lH

Ca(k) = m tzzl At Q||

and
1 N_I*l

CD(k) = ﬁ Z atat+|k|($t - .fz')(.flft+‘k| — i),
t=1
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where
N N
T = Zatfct/Zat.
t=1 t=1
The estimate of the autocovariance in lag k is
_ C7(k)
— Ca(k)’
It is seen that the method just skips the summands which cannot be calculated due

to missing observations, and adjusts the number of observations accordingly. When
no observations are missing C, (k) = 1 and

C(k) (3.11)

1 N
Clk) =~ > (& —T) (@2 — T),

N =
which is the usual estimator, cf. (Madsen 1995, p131). If the definition of C,(k) in
(Madsen 1995, p242) is used, then C,(k) = (N — |k|)/N when no observations are
missing. Consequently, 1/N in the usual estimator of autocovariance is replaced by
1/(N —|k|), and the estimator leads no longer to a non-negative definite autocovari-
ance function, cf. (Madsen 1995, p131).

Based on the estimates of autocovariance (3.11) the sample autocorrelation function
is calculated as

pk) = 2. (3.12)

The inverse autocorrelation function

The inverse autocorrelation function is calculated as in proc arima of SAS/ETS
(SAS Institute Inc. 1993), except that here missing values are allowed. A high order
autoregressive process is fitted to the series using the Yule-Walker equations and
the estimates of the autocorrelation function (3.12). Hereafter the autocorrelation
function is calculated for the dual process, i.e. a moving average process of the same
order as the autoregressive process.

Let k,.q: be the maximum lag for which the sample inverse autocorrelation function
is to be calculated. The order of the process is then

. N
p = min <|:Ej| akma$> )

where [-] denotes the integer value. If k.., > N/2, the estimates for the lags after
N/2 is zero.

The partial autocorrelation function

The partial autocorrelation function is estimated based on (3.12) and calculated as
described in (Madsen 1995, Appendix B).
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Variance of estimates

It is well known (Madsen 1995) that if the observations come from a white noise
process the variance of the estimates of all three types of functions is approximately
1/N. Tt is thus natural to adjust N to account for the number of observations which
cannot be used due to missing values, i.e.

(3.13)

N—|k -1
Zt:1| ‘a'tat+|k\
N — |k| ’

Vip(k)] ~ lN

which equals 1/N if no observations are missing.

For the SIACF and SPACF this approach is not directly applicable since it is not
possible directly to relate the sum in (3.13) to a specific lag. The maximum or min-
imum over the lags for which the estimates are calculated could be used, depending
on the particular application. However, in this report the usual 1/N is used, since
the method will newer be used anyway if a substantial fraction of the observations
is missing.
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Chapter 4

Results

In this chapter the results of the analysis are presented. The analysis consists of
a number of different approaches. In Section 4.1 the individual power measure-
ment series are decomposed and the results are compared qualitatively. Section 4.2
addresses aspects of standardization of the series. In Sections 4.3 and 4.4 the se-
ries are compared quantitatively. Finally, in Section 4.5 the influence of climate is
considered.

4.1 Decomposition of the Individual Time Series

The four time series of power measurements are decomposed into trend, seasonal,
and remainder components as described in Section 3.1. For the seasonal smoother
the data are divided into the three type of days (i) Monday to Friday which are
normal working days, (ii) Half-holy days, including Saturdays, and (iii) Holy days,
including Sundays. For both trend and seasonal smoothers, the weighting window
spans 270 days and locally a second order polynomial in time is fitted. All smooths
are calculated at 50 equally spaced points in time, a convergence criterion (3.1) of
0.001 is used in the inner loop and no robustness iterations are performed.

The results are shown in Figures B.1, B.2, B.3, and B.4, placed in Appendix B.
On each figure the data, trend component, seasonal component, and remainder are
plotted. To the right of each plot a vertical bar indicates the range of the component
with the smallest span. The horizontal line at the bottom of each plot indicates the
period in which the households were visited, cf. Section 2.1, the same period one
year before is indicated by a dotted line.

Also in Appendix B seasonal diagnostic plots, i.e. the data with the trend component
subtracted, grouped by time of day and type of day, and plotted against the date, are
shown for working days only. The plots indicate that the smooths are appropriate,

23
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c.f. (Cleveland et al. 1990). Plots corresponding to the remaining day groups are
not included, but these are very similar to those in Appendix B.

Even though the remainder of the decomposition, clearly, is not white noise some
interesting aspects are noted based on the trend and seasonal components. For two
of the substations (1667 and 4284) the winter peak is clearly lower in 1996,/97 than
in 1995/96 and for substation 1667 the seasonal seems to “flatten” for working days
during the winter 1996/97. It is certainly interesting to compare these observa-
tions with Table 2.1, from which it is revealed that exactly 1667 and 4284 are the
substations to which the campaign were applied.

From the plots of the remainder component it is revealed that some irregular small
scale variation is present. For this reason the trend component is estimated using a
window span of 50 and 100 days also, but still keeping the remaining settings. The
seasonal components are largely unaffected by this, although slightly affected around
Christmas. All estimates of the trend components are displayed in Figure 4.1. The
plots are arranged so that control substations are at the right of the corresponding
active substation, see also Table 2.1. On the plots vertical lines indicate the period in
which the households were visited, together with the corresponding period one year
before. Especially substation 4284 shows low values for the second peak, indicating
that the campaign has had the largest effect for this substation.
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Figure 4.1. Estimates of the trend component (kWh/h) using a window span of 50,
100, and 270 days.
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4.2 Standardization

In the previous section the four time series were compared qualitatively, e.g. in
Figure 4.1 the scale on the y-axes is different. In the following sections the four
series will be compared quantitatively. For this reason it is appropriate to discuss
if the data should be standardized. Considering Table 2.3 it is natural to consider
standardizing each of the four series by either the number of households or by
the total expected power consumption of both households and other consumers.
However, since the pairs active/control have been found by cluster analysis with
emphasis on, size, amplitude of hourly consumption, etc. it seems natural not to
standardize the series.

In the following section it will be indicated that for both purposes of interpretation
and appropriateness of models the data should be logarithm transformed. Further-
more, since the procedures used corresponds to a series of, possibly weighted, least
squares problems a standardization will only add a constant to the estimates. This
is seen from the following. Let Y; be a vector containing values from the four time
series for which the weight when considering time point ¢ is positive. Let X; be
the design matrix corresponding to the model under consideration, and let W; be
a diagonal weight matrix corresponding to the observations Y;. If the four series
are standardized the logarithm transformed observations may be written Y; — Y g4,
note that Yy do not depend on t. Estimates corresponding to the standardized
series may then be written as

~ -1
0.a(t) = (X[ WiX,) XTW, (Y, = Yaa), (4.1)

this equals

A~

~ -1
B.a(t) = B(t) + (XTWX,) X W, Y, (4.2)

where (t) are the estimates corresponding to the original series. From this it is
seen that if the matrices X; and W, do not change for the values of ¢ considered the
last part of (4.2) is constant. This will be true for additive splitting (cf. Section 3.2)
and small bandwidth splitting with fixed bandwidth (cf. Section 3.3).

Consequently, if inference is based on changes in effects, then it will be independent
of standardization.

4.3 Additive Splitting According to 2-by-2 Design

To make a simple assessment of the type and campaign effects the hourly values are
split in mean, type effect, campaign effect, and remainder or residual as described in
Section 3.2. However, transformation of the data should be considered. If in (3.5)
Yijt is the logarithm transformed power consumption log(P;j:) then the fitted value
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of the control substations will be

" (i :
Py, = exp | fi + 2 &y | exp(—03/2) (4.3)
while the fitted value of the active substations will be
N . (_1)i—|—1 ) R
Py = exp | fi, + 9 &y | exp(6/2) (4.4)

Consequently, P, /131'07: = exp(B) and therefore, if 3 is negative, 1 — exp(ﬁA) is an
estimate of the fraction by which the original (no campaign) power consumption
may be reduced if a campaign is carried out.

Similar calculations for untransformed data reveal that ﬁ is an estimate of the reduc-
tion (when 3 is negative) in kW h/h a campaign will have on the power consumption,
i.e., under the model, the actual reduction in kW h/h does not depend on the size of
the substation. Hence, the result from an analysis using logarithm transformed data
has much nicer interpretation. However, in the following both untransformed and
logarithm transformed data will be analyzed with the aim of investigating which are
the most appropriate from a statistical point of view.

Figure 4.2 shows for = 0 and 7 = 0, i.e. substation 1325, and both untransformed
and logarithmic transformed data (i) the residuals plotted against the fitted values,
(ii) a normal quantile-quantile plot of the residuals (Statistical Sciences 1995), and
(iii) a histogram of the residuals. From these plots it is revealed that an additive
splitting of the untransformed data is highly inappropriate. For logarithm trans-
formed data the additive splitting is more appropriate, although it is not perfect.
In Figure 4.3 the sample autocorrelation function, of the residuals mentioned above
when using logarithmic transformed data, is displayed. As expected, a quite high
correlation as well as a seasonal correlation, corresponding to a diurnal variation, is
observed.

The actual additive split on the logarithmic scale is displayed in Figure 4.6, together
with the residuals (e; in (3.5)). To the right of each plot a vertical bar indicates the
range of the component with the smallest span. From the figure it is seen that, on
an average, the campaign effect moves away from zero in the late summer of 1996,
which is the time at which the campaign was initiated, cf. Section 2.1. The effect
seems to be even more pronounced when comparing the winter 1996/97 with the
winter 1995/96. The type effect seems to exhibit annual variation, and possibly on
top of this it is increasing during the late summer and early fall of 1996. However,
this cannot account for the campaign effect, cf. the comment on constant type effect
in Section 3.2.

To assess the significance of the behavior of the estimates of campaign effect initially,
the usual F-statistic for the hypothesis of no campaign effect (Devore 1991) has been
calculated. These values are shown in Figure 4.4 together with quantiles of the F'-
distribution on (1,1) degrees of freedom corresponding to a level of significance
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Figure 4.2. Diagnostics when using untransformed (top row) and logarithm trans-
formed (bottom row) data.
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Figure 4.3. Sample autocorrelation function of the residuals for substation 1325.
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of 1%, 5%, and 50%. It is seem that the F-statistic, during the entire period,
often moves above the 5% level of significance, especially at the end of the period.
However, the problem of multiple testing is evident in this setting and hence it is
doubtful if the usual critical values have any relevance.

If the true campaign effect is zero then the F-statistic, as calculated above, will
have median F'(1,1)o5 = 1, whereas the mean does not exist. From Figure 4.4 it
is evident that the F-statistic rarely is below F(1,1)¢5 from September 1996 and
onwards, indicating a significant campaign effect. This period agrees with the fact
that the main campaign efforts have been spent during August 1996, cf. Section 2.1.
As in Section 4.1 the difference is most obvious when comparing the winter 1995/96
with the winter 1996/97.

The results presented in this section indicate a significant effect of the campaign,
under the assumption of additivity on the logarithmic scale. This assumption seems
to be an reasonable approximation, cf. Figure 4.2. Furthermore, the residuals are
in general smaller than the remaining effects, cf. Figure 4.6, indicating that the
deviation from additivity is small. In Figure 4.5 the campaign component from
Figure 4.6 is plotted on the original scale, together with local line smooth using a
tricube window and a 2% nearest neighbor bandwidth. Overall, Figure 4.5 indicates
a 10% reduction in the campaign effect when comparing the winter 1995/96 with
1996 /97.
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Figure 4.4. F-statistic for the hypothesis that the campaign effect is nil, together with
50%, 95% and 99% quantiles of F(1,1).
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4.4 Non-Additive Splitting

In Section 4.3 the type and campaign effects were estimated for each point in time,
under the assumption that the effect of the campaign is the same for both types (0
and 1) of substations, i.e. it is assumed that the interaction between the type and
campaign effects is negligible. In this section the interaction is estimated by using
neighborhood data. This approach requires an assumption, namely that the effects
and the mean change smoothly over time. The method is described in Section 3.3.
A very small bandwidth, compared to the degree of the approximating polynomial,
is used and consequently the estimates must be calculated exactly for every time
point in the data set. As in Section 4.3 logarithm transformed data are used. At
the end of the section the results are compared with results obtained by ANOVA
decomposition, cf. Section 3.4.

Instead of using the consumption during one-hour periods and down weighting neigh-
borhood data it may be argued that the original 15 minute data could be used and
within the individual hours the data could be treated as four repetitions under the
same experimental circumstances. However, since variations on a smaller time scale
are now present this will not be true. For this reason the method briefly described
above is applied.

Due to the diurnal variation in the data the curvature is an important property. For
this reason second order polynomials are used. If the span of the tricube window
is set to seven hours, then seven hours (28 observations) have non-zero weights, see
Figure 4.7. Some observations have very little weight, if this is taken into account it is
seen that the equivalent number of observations is 4x (14+2x(0.932+0.538+0.051)) ~
16.2. Using second order approximations of the evolution of the mean and the three
effects amounts to 12 local constants. Since the number of observations per point
in time is four these numbers seem appropriate. Note that a two-sided window is
used, another possibility is to use a left-sided window, but since this will introduce
a phase shift we do not consider this further.

S
a 0.932
_'Su 0 | 0.538
o o
=
o 0.051
=
t-4 t-3 -2 t-1 t t+1 t+2 t+3 t+4

Figure 4.7. Weights on observations when the tricube window spans seven hours.

The bandwidth chosen corresponds to a model where the error has approximately
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50% of the total degrees of freedom (number of observations). This is seen by cal-
culating the degrees of freedom, using the smoother matrix as described in (Nielsen
1997), for a description of the concept of a smoother matrix see (Hastie & Tibshirani
1990). However, due to computational limitations, the degrees of freedom cannot
be calculated for the solid data set. Instead the degrees of freedom are calculated
using six consecutive days®, yielding an error degrees of freedom of 281.4, with 576
observations this amounts to 49% of the total degrees of freedom. Varying the num-
ber of days used indicated that the degrees of freedom per observation are stable
when observations from six days are used.

The result of the splitting of the four time series is displayed in Figure 4.8. With
respect to the main effects (type and campaign) the result resembles that obtained
for additive splitting, cf. Figure 4.3. This is no surprise since, except in case of
missing values, the weighted least squares problems solved to obtain the results in
Figure 4.8 all correspond to balanced designs, i.e. requiring the interaction to be
zero will not influence the other estimates.

The residuals of the split are investigated. The standard deviation of the four
residual series is in the range from 0.032 to 0.037. The correlation between series is
in the range form 0.40 to 0.48 and the autocorrelation in lag 1 is approximately -0.4.
Furthermore, a weak diurnal variation is present. Both the sample autocorrelation
function, the inverse autocorrelation function, and the raw periodogram indicates
that a (high frequency) MA(1) model will be able to explain the main part of the
remaining variation of the individual series. To account for the cross correlation a
vector MA(1) model may be applicable. However, we do not consider these aspects
further.

In principle, in case of an significant interaction the campaign effect cannot be
interpreted as a difference independent of type, and vice versa. However, if the
interaction effect is significant the data differ with respect to both type and campaign
and we may infer that there is some evidence of an campaign effect, but it may
have opposite sign for the two types of substations, or it may be nil for one of them.
Although, a formal test for the interaction effect has not been developed there is some
evidence that this effect is in fact significant. The sum of the squared differences
between fitted values, when including the interaction effect and when excluding
this is 87.7 (log-scale) and the sum of the squared residuals when including the
interaction effect is 70.8. As mentioned above the small bandwidth splitting used
in this section has degrees of freedom approximately equal to half the number of
observations (=~ 4 x 15000). Furthermore it seems reasonable to assume that the
four components corresponds to the same number of degrees of freedom. The usual
ANOVA F-statistic is then

 _ 87.7/(60000/2 - 3/4 x 60000/2) _
~70.8/(60000 — 60000/2)

on (7500,30000) degrees of freedom. The 95% quantile of the corresponding F-

!The results are independent of which six days are used, provided that no values are missing.
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distribution equals approximately 1.0 (which is true for all F-distributions with a
large number of degrees of freedom). Consequently, using the normal F-test suggests
a strongly significant interaction effect.
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Figure 4.8. Result of small bandwidth splitting.

Following the procedure of small bandwidth splitting described above the fitted
values on the original scale may be expressed as

13Z_jt _ eﬂte(—1)“’1dt/2€(—1)j+1ﬁt/Qe(_l)i(_l)j;Yt/Q; i,j7=0,1, (4.5)

where p; is the mean, o, is the type (i), (3; is the campaign (j), and ~; is the
interaction effect (j = 0 corresponds to “control” and j = 1 corresponds to “active”).

For type 0 (substations 1325 (control) and 4284 (active)) the ratio between the fitted
values for active and control is

= = eBte_%, (4.6)

and for type 1 (substations 2588 (control) and 1667 (active)) the ratio between the
fitted values for active and control is

S et (4.7)
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From (4.6) and (4.7) it is seen that if the interaction effect is small compared to
the campaign effect, this can be interpreted without considering the type. If the
interaction (v) is positive on the log-scale then the ratio for type 0 is smaller than
for type 1, indicating that the campaign has a larger effect on type 0 than on type
1. This is illustrated by the following example.

Example 4.1 Suppose 3, = —0.1 and 4, = 0.05. From (4.6) and (4.7) the ratios
between active and control is calculated for each type.

~ ~

POlt _ _ Pllt _ _
— = 0.905 x 0.951 = 0.86, —— = 0.905 x 1.051 = 0.95
00t PlOt

If the mean over ¢ of the interaction effect is close to zero or if it exhibits a diurnal
variation but averages to a value close to zero over a period of some days a trend
component of the campaign effect can be interpreted without considering the inter-
action. For this reason the estimates of the interaction effect are analyzed in the
following.

Figure 4.9 shows box plots (Statistical Sciences 1993) of the diurnal variation of
the interaction effect for the three types of days. It is seen that half-holy and holy
days are quite similar, for which reason these groups will be pooled in the following.
Furthermore, the box plot corresponding to working days reveals that part of the
interaction originates from a phase shift of the four series.
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Figure 4.9. Bozx plots of the interaction effect from Figure 4.8 versus the time of
day for working days (left), half-holy and Saturdays (middle), and holy and Sundays

(right).

Based on the observations regarding the diurnal variation all models considered for
the interaction effect contain a variation in the (marginal) mean. The variation is
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modeled with a free parameter for each hour of the day. In the following d; will
denote this diurnal profile, which equals

dy = I,(t) Z Li(t) i + (1 — 1,(2)) ;Ii(t)ﬂgi, (4.8)

where I,,(t) equals 1 if ¢ corresponds to a working day and 0 otherwise, I;(t) equals 1
if ¢ corresponds to the time of day denoted by 7, and p1; and uo; are the parameters.

A model consisting of a diurnal profile only is fitted to the data. The estimates of
the autocorrelation function and the inverse autocorrelation function are displayed
in Figure 4.10. The estimates indicate that a autoregressive model with a seasonal
component at 24 hours is needed to account for the correlation. Many different
models are fit to the series and the estimates of the autocorrelation function com-
pared. During the process it is revealed that a seasonal component at lag 168 is
also needed. For computational reasons the models are not fit directly as seasonal
models, instead the corresponding model being linear in the parameters is used.
Finally, an AR(48) model with a seasonal component at lag 168 is selected and the
following model fit to the series by least squares

48 216
Y=Y a i+ Y ayi+di+e, (4.9)
=1 1=168

where y; is the interaction at time ¢, d; is the diurnal profile (4.8), and {e;} is a
zero mean white noise process with constant variance. The estimate of the autocor-
relation function of the residuals from this model is displayed in Figure 4.11. It is
seen that the model fits the data well. From this it is concluded that the interaction
can be modeled by a stationary stochastic process, with the exception of a varying
but constrained marginal mean. The pole with the largest modulus is real and lie
at 0.996, this is consistent with the long memory indicated by the plot of the series
(Figure 4.8, bottom) and the estimate of the autocorrelation function in Figure 4.10.

Under model (4.9) the marginal mean m; must obey the recursive equation

48 168
my = Z a;My—; + Z a;My—; + dt, (410)
i=1 1=0

but since d; is not strictly periodic (e.g. around Christmas) m; will also not be
periodic, not even on a weekly basis. The solution of the recursions, when fixing the
initial values needed at zero, is displayed in Figure 4.12. The figure also shows a
locally weighted mean using a tricube window spanning one week. When comparing
with Figure 4.8, it is seen that with respect to the trend the deterministic part of the
interaction is very small. This ensures that the decreasing trend in the campaign
effect observed for the additive splitting (Figure 4.5) is approximately independent
of the type. Comparing the period October — March 1996/97 with the same period
one year earlier a reduction of approximately 10% from 95% to 85% is observed.
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Figure 4.10. Sample autocorrelation function (left) and inverse autocorrelation func-
tion (right) of the residuals of a model consisting of a diurnal profile only. The

mazimum lag is 168 hours. An approzimate 95% confidence interval for white noise
18 indicated by dotted lines.
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Figure 4.11. Sample autocorrelation function of the residuals from (4.9). The maz-

imum lag is 504 hours (three weeks). An approrimate 95% confidence interval for
white noise 1s indicated by dotted lines.
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Figure 4.12. Solution of the recursions (4.10) when fizing the initial values needed
at zero, together with a locally weighted mean, and the range of this (-0.0051 to
-0.0005).

In Figure 4.13 the campaign and interaction effects from Figure 4.8 are displayed
on the same plot. It is seen that for the first part of the period the interaction
almost hides the campaign effect, whereas the effects seem to diverge starting in the
late summer of 1996. The smoothed series overlayed on the plot clearly show that
the interaction moves around zero, while the annual variation of the campaign effect
observed for the period 1 July 1995 until 1 July 1996 is not repeated in the following
period. The smoothed values of the campaign and interaction effects from the figure
just considered are used to estimate the ratio between the power consumption of
active and control substations for type 0 and 1 as described in (4.6) and (4.7). The
results are shown in Figure 4.14. Also the pooled estimate, e’ in the equations
just referred, is shown in the figure when using a smoother with a window span of
64 days. The ratios for the individual types do not differ markedly over time, and
overall the pooled estimate seems appropriate.

Very similar results are obtained using ANOVA decomposition, cf. Section 3.4, of
the logarithmic transformed series. Two decompositions are performed. For both
series the seasonal smoothing is performed separately for working days and non-
working days, using local lines and weights based on a tricube window spanning 270
days. The trend smoothers both use local second order polynomials; but one uses a
tricube window spanning 50 days and the other uses a window spanning 270 days.
In both cases a convergence criterion (3.1), corresponding to a maximum relative
change of any of the components, of 0.001 is used and no robustness iterations are
performed. The settings are chosen as described since they resemble the ones used in
Section 4.1, in which seasonal diagnostic plots are used to access the appropriateness
of the settings. The results obtained for the trend component are used in Figure 4.15
to obtain estimates of the ratios between active and control for the individual types.
Also the pooled estimate based on the trend smoother with a window span of 270
days is shown on the plot. Compared with Figure 4.14, the results are very similar.



Chapter / Results 37

Plots of the remainder of the ANOVA decompositions exhibit some small scale
irregular variation. This could be modelled adding another trend component varying
on a smaller scale. Although this seems to be an obvious way of identifying at which
time scale the results can be interpreted without considering the type, the concept
is not considered further.

Campaign and Interaction
0.0

-0.2

<
[=}

01 Jul 1995 01 Jan 1996 01 Jul 1996 01 Jan 1997

Figure 4.13. Campaign (dotted) and interaction (solid) effects from Figure 4.8,
together with robust locally weighted linear smooths for (tricube) window spans of
6.4, 19.2, and 64 days.
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Figure 4.14. Ratio of 4284 to 1325 (solid) and 1667 to 2588 (dotted) based on the
smooths from Figure 4.13. The bold line shows the pooled estimate for the smoother
with the widest window (64 days).
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Figure 4.15. Ratio of 4284 to 1325 (solid), 1667 to 2588 (dotted), and a pooled
estimate (bold) based on ANOVA decompositions where only the span of the trend
smoother window is varied (50 and 270 days).
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4.5 Influence of Climate

4.5.1 Comparing Trend Components and Climate

In the previous sections it is shown that over time the development of the power
consumption indicate an effect of the campaign. However, an annual variation is
present and consequently some part of the variation may be explained by the cli-
mate. For this reason the results are compared with the monthly degree days as
displayed in Figure 2.2. However, these are first used to generate hourly values using
linear interpolation followed by scaling to obtain values for which the sums for the
individual months equal the original data.

Figure 4.16 shows the trend components from the decomposition of the individual
series, shown in Figure 4.1, plotted against the degree days. It is seen that for time
points later than 1 Oct. 1996 the trend component as a function of the degree days
has a smaller slope for the active (left) than for the control (right).
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Figure 4.16. Estimates of the trend component of the individual time series for three
bandwidths (also shown in Figure 4.1) versus the degree days. Time points later
than 1 Oct. 1996 are indicated by bold lines.

Similar plots for the mean, type, campaign, and interaction effect of the trend com-
ponent from the ANOVA decompositions considered in the last part of Section 4.4
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are displayed in Figure 4.17. From these plots it is seen that the campaign effect is
the one which most clearly separates the time points before and after 1 Oct. 1996.
Furthermore, the annual variation of the mean and type effects is to a large extend
explainable by the degree days. The interaction effect seems to differ slightly for
the first part of the period after 1 Oct. 1996, but ends up in the same region as the
values during the winter 1995/96.
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Figure 4.17. ANOVA decomposition: Mean, type, campaign, and interaction of the
trend component for logarithmic transformed data, using a window span of 50 and
270 days versus the degree days. Time points later 1 Oct. 1996 are indicated by bold
lines.

4.5.2 Modelling the Dependence on Climate

In this section the dependence on the degree days will be modelled. It is clear that
besides the dependence on the degree days the data contain a diurnal variation, and
from Figure 2.3 it is clear that the amplitude of the diurnal variation varies over
time. Plots of the logarithmic transformed data indicate that the diurnal variation
on this scale has a constant amplitude. In the following it will be assumed that this
is true, but the appropriateness of the assumption will be addressed by analyzing
how well the model(s) fit the data.

Figure 4.18 shows the logarithmic transformed data versus the degree days for the
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four substations. Apart from observations for which the degree days are below
approximately 0.1°C/h the relationship seems to well described by a strait line.
Observations with low values of degree days are only present in the data set before
the campaign was initiated. These observations will be accounted for by estimating
a trend component (see below).
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Figure 4.18. Logarithmic transformed power consumption (kW h/h) versus the degree
days (°C/h) for the four series.

Since almost all visits are performed before 1 Oct. 1996, cf. Figure 2.1, the following
model is fit to the individual series.

lOg(Pt) = E +a+ bGt + dt + IlOctQG(t) [ACL + AbGt + Adt] + €y, (411)

where T} is the trend component at time ¢; G is the degree days at time t; I10e196(t)
equals -1 before and 1 after 1 Oct. 1996; a, b, Aa, and Ab are constants; d; and Ad;
are diurnal profiles similar to (4.8); i.e.

d, = I (1) [u + i]i(t),ulil 4 (1= (@) [-u + i[i(tm] , (4.12)

where 1. denotes the parameters, and Y22, p1; = S5, po; = 0, i.e. for working days
the mean is p and for non-working days the mean is —u. Internally in the software
used for estimation a Helmet parametrization is used (Chambers & Hastie 1991),
(3.3) is an example of a coding corresponding to a Helmet parametrization. A



42 Effect of a Power Conservation Campaign

necessary condition for the uniqueness of the estimates is that 7; sums to zero over
the period considered.

The trend component 7} of (4.11) is modelled by a smoother, and hence no specific
parametric form is assumed. The smoother used is based on locally weighted poly-
nomial regression, using a tricube window and a nearest neighbour bandwidth. In
order to be able to appropriately model peaks second order polynomials are used
locally. Model (4.11) is fitted by back-fitting (Hastie & Tibshirani 1990), altering
between smoothing and linear regression, and initiating the procedure by fitting the
linear part of the model and disregarding the trend component. In order to obtain
an estimate of the trend component that sums to zero over the period considered,
the smooth is adjusted by subtracting the overall mean of the smooth. The iterative
procedure is stopped when both the fitted values of the linear part and the trend
component do not change more than 0.1%, relative to the total range of the fitted
values, from one iteration to the next.

For some bandwidths the estimation in (4.11) does not converge after 50 iterations,
and in general the convergence is slow. Investigations show that this is due to the
fact that for some bandwidths (windows spanning 25% of the data on the time axis)
the rate of change in the estimate of the trend component is of the same order as the
rate of change in the degree days. Furthermore, starting approximately at 1 June
1996 the curves are in phase. Hastie & Tibshirani (1990) call these type of problems
for concurvity. Based on these observations it is concluded that Aa and Ab in (4.11)
cannot be estimated unambiguously. As a consequence the reduced model

log(Pt) = ﬂ +a+ bGt + dt + IlOctQG(t)Adt + ey, (413)

will be used. Doing this, as much as possible of the long term variation in P, will
be accounted for by a global linear model in G}, whereas the remaining is accounted
for by the trend-smoother. The linear part of the model, i.e. all except 7}, contains
96 parameters, most of which are describing the diurnal profiles.

Bandwidth Selection

Model (4.13) is fitted for nearest neighbour bandwidths of 1, 3, 5, 10, 15, 20, ...,
60, and 65%. The sample autocorrelation function (SACF) and sample inverse
autocorrelation function (SIACF) of the residuals for the bandwidths 1% and 3%,
when using observations from substation ID 4284 is displayed in Figure 4.19. For
a bandwidth of 1% it is seen that the SIACF has a rather strange appearance, and
it is concluded that bandwidths lower than 3% are inappropriate. For bandwidths
higher than 3% the SIACF is nearly identical to the SIACF in the bottom row of
Figure 4.19. This indicates that an AR(1) model with a seasonal component at lag
24 will be able to account for most of the temporal correlation in the residuals.

To assist the selection of bandwidths different information criteria are considered.
In order to do that the equivalent number of parameters of (4.13) must be known, cf.



Chapter 4 Results 43

<
@
o
L © L
g © 9
<@ [0}
o a <
e o 5
(c/)“ o § o 7
g o || HH‘HHHHMHHH ‘
; S ‘
0 50 100 150 0 50 100 150
lag
e
T [ce]
o
L © Lo
g ©° g <
o2 o o
Qo =
Y g
o ° & o \ f
N <
<@ Q@
0 50 100 150 0 50 100 150
lag lag

Figure 4.19. Sample autocorrelation function (left) and inverse autocorrelation func-
tion (right) of the residuals from model (4.13), using a nearest neighbour bandwidth
of 1% (top) and 3% (bottom). The mazimum lag is 168. An approzimate 95%
confidence interval for white noise is indicated by dotted lines.

Section 3.5. For the implementation of the backfitting algorithm the loess function
of S-PLUS (Statistical Sciences 1995) is used for smoothing, this function provides
an approximation to the equivalent number of parameters, see also (Cleveland, De-
vlin & Grosse 1988). In the following the equivalent number of parameters of (4.13)
will be taken to be the sum of the number of parameters in the linear part of the
model and the equivalent number of parameters of the trend component estimator.
Based on this, together with the residuals of the fit, the information criteria Gener-
alized Cross Validation (GCV), Akaike’s Information Criterion (AIC), and Bayesian
Information Criterion (BIC) are calculated for each of the bandwidths considered
above, cf. Section 3.5.

Since AIC and BIC are likelihood inspired, at least one of the models considered
should yield residuals resembling white noise. According to Figure 4.19 (and similar
plots for other bandwidths) this is clearly not the case for model (4.13). However,
the residuals can be appropriately modelled by a zero mean autoregressive model
with non-zero parameters at lags 1, 24, and 25. Figure 4.20 shows the SACF after
fitting the above mentioned autoregressive model to the residuals from (4.13), when
using a bandwidth of 3% and data from substation 4284. Compared with Figure 4.19
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it is seen that most of the temporal correlation is accounted for. The information
criteria are therefore also calculated after fitting the autoregressive model to the
residual series. In this case the number of observations N is decreased due to extra
missing values being generated by the autoregression.
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Figure 4.20. Sample autocorrelation function after fitting an autoregressive model
to the residuals from (4.13), when using a bandwidth of 8%. An approrimate 95%
confidence interval for white noise is indicated by dotted lines.

Figures 4.21 and 4.22 displays the values of GCV, AIC, and BIC for different band-
widths. In Figure 4.21 the values are calculated based on the residuals after fitting
(4.13), whereas in Figure 4.22 the values are calculated after fitting the autoregres-
sive model. In this case the three parameters of the autoregressive model are added
to the total equivalent number of parameters.

When not adjusting for the temporal correlation of the residual series it is seen that
GCV and AIC point towards a bandwidth of 1%, whereas BIC leads to 3%, but
above it is argued that 1% is inappropriate for other reasons. If the adjustment
is performed as described, although inappropriate for the low bandwidth of 1%,
GCV and AIC points towards a bandwidth of 3-10%, whereas BIC leads to an very
high bandwidth (the linear part of the model contain 96 parameters). Overall 5%
seems to be an appropriate choice, or perhaps 10% if a more smooth estimate of the
trend component is desired. For these two bandwidths the estimates of the trend
component are displayed in Figure 4.23. Based on this figure a bandwidth of 10%
is selected. Residual diagnostic plots are included in Appendix C, and these are all
fairly well behaved, although the normal quantile-quantile plots indicate that the
distribution of the residuals has longer tails than the normal distribution.

In the bandwidth selection the BIC criterion is neclected since we believe that it is
inappropiate for the kind of models considered, see the discussion in Chapter 6. For
completeness the values of BIC are, however, displayed.
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Figure 4.21. Bandwidth selection criteria GCV, AIC, and BIC when different band-
widths (shown in percent on top of each plot) are used for the local quadratic trend
smoother in (4.13).
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Figure 4.22. Bandwidth selection criteria GCV, AIC, and BIC as in Figure 4.21,
but calculated after modelling the temporal correlation of the residual series.
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Figure 4.23. Estimates of the trend component using bandwidths 5 and 10% for all
four substation.

Final Estimates

In the remaining part of this section the results using (4.13) together with a 10%
nearest neighbour smoother, as described above, will be presented. First it is noted
that the fitted values under (4.13) may be written as

1315 — eflei)GteTt ecit+I1oct96(t)Adt_ (4_14)

Here @ is the overall level of power consumption in kWh/h, €bCt is the factor by
which the overall level is changed due to the degree days G, T is the factor by
which the overall level is changed on the long run due to other factors than G}, and
edithioess(t)Ade i the factor by which the daily level etebGieTh g changed due to the
time of day and week.

The estimated level and dependence on degree days, expressed as e? and ZA), are
displayed in Table 4.1. A similarity is seen within types of substations, i.e. the
groups 4284/1325 and 1667/2588. For b = 0.85 h/°C' the value of bG,; will range
from 0 to 0.7, i.e. the range is very similar in size to the range of the trend component
on the logarithmic scale, cf. Figure 4.23.

Figure 4.24 displays the percent-wise increase in the long run power consumption
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~

e’ b
Substation | (kWh/h) (h/°C)
4284 59 0.76
1325 67 0.70
1667 84 0.85
2588 96 0.85

Table 4.1. Estimated level (¢*) and dependence on degree days (b) for all four sub-
stations.

due to other factors than the degree day values, i.e. (et —1) x 100%, for each pair of
active and control, cf. Table 2.1. On the figure the period in which the households
were visited and the corresponding period one year before are indicated by horizontal
line segments. It is seen for both pairs that the control starts below the active and
crosses over just before the initiation of the trial. The effect is more pronounced for
4284/1325 than for 1667/2588. To partly eliminate differences before the initiation
of the trial the average difference between active and control up to 1 Aug. 1996
is added to the control. The adjustment displayed is performed on the log-scale.
However, performing the adjustment on the original scale gives virtually the same
results. Using this adjustment it is clearly seen that the effect is more pronounced
for one pair than for the other. The reason for the crossing of the active and control
curves before the initiation of the trial could be (i) that the households are contacted
by mail and phone before the actual visits, and /or (ii) that the actual shift is quite
pronounced, which, due to the construction of the smoother, will result in slowly
changing estimates starting before the actual shift. If (ii) is the case it should be
detectable by visual inspection of the residuals, however, this does not seem to be
the case.

The estimates of the trend component (on the log-scale) are split in mean, type,
campaign, and interaction effects. The split is performed as described in Section 3.2,
but observing that in this case twice the residual corresponding to substation 1325
equals the interaction as described in Section 4.4 (model (4.5)). Figure 4.25 shows
the four components from which the original estimates of the trend components can
be perfectly restored. The interaction effect is the smallest of all. Figure 4.26 shows
the ratio between active and control, together with the overall ratio, cf. (4.6) and
(4.7) in Section 4.4. Although, there seems to be some difference between types (see
also Figure 4.24) the overall estimate is not totally misleading, in that the same
overall behaviour is present for both types. The overall estimate, when visually
smoothed, indicates a 10-12% difference between 1 Jan 1996 and 1 Jan 1997. This
is also true when comparing the period just after the visits to the households, with
the same period one year before. Note that this reduction is essentially the same as
found without considering the climate, cf. Section 4.4 and Figure 4.5.

In Appendix C plots of the estimated diurnal profiles are displayed. In Figure C.1
and C.2 the results are compared for active and control substations, both before and
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Figure 4.24. Estimates of the trend component of (4.18) using a bandwidth of 10%
for each pair of active (—-) and control (- - -). An adjusted estimate of the control
(— — ) is also included.

after 1 Oct. 1996. In Figure C.3 and C.4 the individual substations are addressed,
the results obtained for the first period (before 1 Oct. 1996) are compared with
the results obtained for the last period (after 1 Oct. 1996). For the active/control
comparisons only minor differences are observable. However, one feature seems to be
consistent for both types of substations and for both working and non-working days;
when comparing the last period with the first period the active substations seem
to have reduced consumption in the evening when compared with the control. For
the comparisons based on the individual substations the consumption after 18:00 (6
p.m.) is even larger in the last period than in the first, but this seems to be true
for both active and control substations. In conclusion the diurnal profiles measured
relative to the daily level do not seem to be seriously affected by the campaign. This
is probably expectable since the logarithmic scale is used for the analysis. In this
way the diurnal variation in kWh/h is dictated solely by the daily level and by a
basic profile which express the relative change over the day and night. For instance,
if the overall level for a substation is 80 kWh/h and if the campaign results in a
12% reduction and if the diurnal variation spans -40% to +75% as in Appendix C,
then the amplitude of the diurnal profile will change from 92 kW h/h (48-140) to 81
EWh/h (42-123).
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Figure 4.25. Mean, type, campaign, and interaction of the four estimates of the
trend component (log-scale) of (4.13) using a bandwidth of 10%. The bars on the
right-hand side cover the same range.
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Figure 4.26. Estimated ratio between the trend component of active and control for
4284 and 1325 (solid) and 1667 and 2588 (dotted), together with the overall ratio
(bold). A 10% bandwidth is used for the estimation in (4.13).
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Pointwise Confidence Intervals

With the purpose of accessing the uncertainty of the claims stated above pointwise
95% confidence intervals are calculated for the estimates related to the trend, overall
level, and dependence on degree days. Confidence intervals related to the diurnal
variation are not presented since the size of the difference displayed in Figures C.1,
C.2, C.3, and C.4 are judged to be unimportant anyhow.

The pointwise confidence intervals are obtained using bootstrapping, cf. Section 3.6.
As shown above the residuals of model (4.13) are correlated, but this correlation
is appropriately modelled by a simple autoregressive model. However, as pairwise
comparisons between substations are important, see e.g. Figure 4.26, the cross-
correlation between the residuals from the autoregressive models should be investi-
gated, and possibly modelled.

Figure 4.27 shows the sample autocorrelation matrix after fitting an autoregressive
model with non-zero parameters in lags 1, 24, and 25 to each of the four residual
series. Since the software used for calculating the autocorrelation matrix (the acf
function of S-PLUS (Statistical Sciences 1995)) do not allow missing values, the
correlation values are calculated by just disregarding time points in which any of
the observations are missing. The off-diagonal plots show a cross-correlation near
0.4 in lag 0 and 0.2 in lag +1.

For bootstrapping it is not necessary to remove the cross-correlation in lag zero.
This correlation can be accounted for by sampling time points only and hence keep-
ing the stochastic dependence between errors in lag zero intact. With the aim of
reducing the cross-correlation, for non-zero lags and especially lag +1, a multivari-
ate autoregressive model is fitted to the multivariate series consisting of the four
residual series from (4.13).

The diagonal of the matrix of autoregressive operators (Jenkins & Alavi 1981) con-
tains non-zero parameters at lag 1, 24, and 25, while the off-diagonal elements con-
tain a non-zero parameter at lag 1. The model is fitted by observing that for each of
the series the value at a particular time point is the sum of a white noise component
corresponding to the time point and a linear combination of lagged values for the
four series. Therefore one-step predictions are formed exactly like in autoregressive
models with external input (ARX-models). This leads to an estimation procedure
in which the parameters of the multivariate model are estimated as least squares
estimates of the four corresponding ARX-models.

The sample autocorrelation matrix of the residuals from the multivariate model is
displayed in Figure 4.28. Some improvement is seen, especially for the off-diagonal
plots in lag +1. The improvements in lag +1 are highlighted in Table 4.2. Overall
the cross-correlation in lag +1 is reduced by at least 1/3.

The residuals from the multivariate autoregressive model are judged to be close
enough to multivariate white noise to allow for bootstrapping. To generate simulated
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Figure 4.27. Sample autocorrelation function matriz of the residuals of (4.18) after
fitting an autoregressive model to each of the series. Approximate 95% confidence
intervals are indicated by dotted lines.
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Figure 4.28. Sample autocorrelation function matriz of the residuals of (4.18) after
fitting an multivariate autoregressive model to the four series. Approzimate 95%
confidence intervals are indicated by dotted lines.
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4284 1325 1667 2588
4284 1 0.041 0.124 0.132 0.159
1325 | 0.201 0.049 0.189 0.197
1667 | 0.206 0.171 0.035 0.211
2588 | 0.204 0.169 0.181 0.054

4284 1325 1667 2588
4284 | 0.068 0.116 0.101 0.115
1325 | 0.116 0.091 0.116 0.129
1667 | 0.115 0.138 0.077 0.141
2588 | 0.110 0.134 0.114 0.094

Table 4.2. Correlation values in lag £1 as displayed in Figures 4.27 (top) and 4.28
(bottom).

observations the fitted values of (4.13) are calculated for each substation. Hereafter a
sample of size 15358 (the number of hours in the data set) is drawn with replacement
from the residuals of the multivariate autoregressive model, and by conditioning on
the 25 first residuals from (4.13) a simulated error sequence corresponding to (4.13)
is generated. To obtain simulated series of the dependent variable (log(P;)), for each
substation, these simulated residuals are then added to the corresponding series of
fitted values. The bootstrap replicate of the estimates is then generated by applying
the original estimation procedure to the simulated data.

Four hundred bootstrap replicates were generated, each using approximately 5.5
CPU minute on a HP 9000/800. Since the number of observations are large and the
estimates are linear combinations of the adjusted observations, cf. the backfitting-
algorithm described in Section 3.5, teoretical considerations suggest that confidence
intervals can be found by assuming that the estimates are normally distributed.
Furthermore, this is validated by inspecting the bootstrap replicates of the estimate
of the trend component in (4.13). More precisely the mean and median is plotted
together with 95% percentile and standard normal intervals. Differences are only
revealed when using a large plot area, cf. Figure C.9, and even on this plot the differ-
ence is hardly visible. Consequently, if the standard normal intervals are calculated
based on estimates on the logarithmic scale, or based on sums/differences on this
scale, it will probably result in results of high precision. This approach is applied in
the following.

Table 4.3 contains 95% confidence intervals of the level and dependence on degree
days. These are indeed quite narrow and this confirms that the dependence on
degree days is significant.

On the following figures the period in which the households were visited and the cor-
responding period one year before are indicated by horizontal lines, solid and dotted,
respectively. Figure 4.29 shows 95% confidence intervals of the four estimates of the
trend components. For both types of substations there is a tendency of the control
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e’ b

Substation | (kKWh/h) (h/°C)
1284 | [58.2, 59.6] [0.731, 0.779]
1325 | [66.5, 68.0] [0.673, 0.719)]
1667 | [83.3, 85.4] [0.828, 0.880]
2588 | [94.9, 97.0] [0.826, 0.875]

Table 4.3. 95% confidence intervals of the level (e?) and dependence on degree days
(b) for all four substations.

substation being below the active substation at the beginning and above at the end
of the period. However, these plots do not take the correlation between substations
into account. For this reason each bootstrap replicate of the trend component (four
sets of estimates) is split into mean, type, campaign, and interaction effect (which
is an additive operation on the logarithmic scale).

4284 (active) and 1325 (control)

o
<
X 8
o
e o
< [aV)
- o
2 o
|_
a
x
2l
o
N
01 Jul 1995 01 Jan 1996 01 Jul 1996 01 Jan 1997
o 1667 (active) and 2588 (control)
R 8
o
e o
> [sV)
= o
s o
'_
rey
x
o
o
N
01 Jul 1995 01 Jan 1996 01 Jul 1996 01 Jan 1997

Figure 4.29. 95% confidence intervals of the estimates of the trend component.
Results from control substations are indicated by dotted lines.

Figure 4.30 shows 95% bootstrap confidence intervals of these estimates. It is seen
that the interaction effect often is close to zero and compared with Figure 4.29 the
effect of the campaign is far more clearly revealed. Based on the bootstrap replicates
of campaign and interaction effects the 95% confidence intervals of the ratio between
active and control, displayed in Figure 4.31, are found. Comparing the period after



56 Effect of a Power Conservation Campaign

the trial with the same period one year before (using the horizontal lines as guidance)
indicate an overall reduction of 10% or more. For substations 4284 and 1325 the
reduction is larger; 15% or more. For substations 1667 and 2588 the reduction is
smaller; around 5%, except near the end of the measuring period were it is 10%.

Mean
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0.06

Campaign

-0.06
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T T T T
05 Aug 1995 21 Feb 1996 08 Sep 1996 27 Mar 1997

Figure 4.30. 95% confidence intervals of the mean, type, campaign, and interaction
effects of the estimates of trend component on the logarithmic scale. The vertical
bars cover the same range on all plots.

Figure 4.32 further clarifies these aspects. On this figure the differences between
corresponding dates in the first and last part of the confidence limits of the ratio
between active and control substations are displayed. Ideally 95% confidence inter-
vals of these differences should be calculated. However, this amounts to calculating
quantiles of a stochastic variable which is the result of a difference between two,
possibly dependent, log-normal stochastic variables. Such a variable will have long
tails and hence the percentile intervals will be uncertain, and the standard normal
intervals cannot be expected to be correct.
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Figure 4.31. 95% confidence intervals of the overall ratio between active and control
(top) and the ratio for each type (middel, bottom).
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Figure 4.32. Difference between lower (solid) and upper (dotted) confidence limits of
the ratios between active and control in the first and last part of the curves displayed
in Figure 4.31. Dates corresponding to the last part are used on the z-axis. Negative
values correspond to a decrease over time.
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Chapter 5

Conclusion

The purpose of the project described in this report is to develop and investigate
methods for estimating effects of power conservation campaigns, and to estimate
the effect of a particular campaign. The main concepts used are (i) grouping of
substations during the early phase of planning with the purpose of defining groups
of substations which can serve as control /active in the experiment, and (ii) analysis
of data taking the predefined groups into account. It is demonstrated that non-
parametric and semi non-parametric methods, combined with traditional time series
analysis and bootstrapping are well suited as statistical tools for these kind of data.

Measurements from a controlled trial addressing power conservations in households
are analysed. The measurements are power consumptions over 15 minute intervals,
measured at substation level. Before analysis these values are summed to hourly
values. Two active substations, each with a control substation, are included in the
trial.

Statistical analysis suggest that logarithmic transformed data should be used. Hence,
the quantification of effects as percentages, instead of units of power consumption
(kWh), are both statistical well founded and intuitively appealing.

For one substation the difference between years is quite large. For this reason the
controls are extremely important. With respect to the number of substations it may
be argued that the trial is not very large. On the other hand 225 households have
been visited and the four substations supply 631 households. The homogeneity of
households with respect to the tendency to respond to a campaign is probably larger
within substations than between substations. For this reason the 631 households
can not be regarded as random sample and the “effective number of households”
is thus smaller. From Figure 4.24 it is evident that the two controls behave quite
similar, also after the trial, and for this reason we are fairly confident that the
findings regarding the active substations are due to the trial, i.e. a fairly large
reduction for substation 4284 (Vindinge) and a smaller reduction for substation 1667
(Trgrgd). The overall results indicate a 10-12% reduction of the power consumption.

99



60 Effect of a Power Conservation Campaign

However, due to the observed difference between the two pairs of active and control
substations, an extrapolation to other substations of similar kind will be difficult.

These results are valid both in the case where no information regarding climate
is used, and when part of the long term variation in data is accounted for by the
monthly degree day values. This indicates that when using controls the climate can
be disregarded, at least with respect to the overall results.

When the diurnal profile is measured as the relative deviation from the daily level
during the cycle, practically no effect of the campaign can be detected. This may
be due to the fact that the diurnal variation is very large (-40 to +75%). Of cause,
the amplitude of the profile measured in units of power consumption is strongly
dependent on the daily level.

For the case where information regarding climate is used the variation over time is
addressed. When comparing the time points after the campaign with the same time
points one year before it is clearly seen that, compared with the control, substation
4284 (Vindinge) responds faster than substation 1667 (Trgrgd), and except for the
last part of the period the reduction is largest for substation 4284, cf. Figure 4.32.
This figure also indicates that the response is temporary, or at least larger in the
months following the trial than can be expected on the long run. This should be
further investigated when one or two more years of data become available.



Chapter 6

Discussion

As mentioned in the conclusion the results indicate that all hourly values of power
consumption are reduced proportional to their size when carrying out a campaign,
i.e. the diurnal variation seems to be dictated by the daily level of power consump-
tion. This suggests other experimental designs in which the power consumption is
measured for the individual households, but as sums over long periods (say three
months or more). If measurements can be obtained inexpensively, e.g. by consumer
readings of their usual equipment, this gives the possibility of experiments of which
the results are more representative than the ones obtained in this trial. The ideal
is random sampling of households for participation in the trial, but since not all
households will be willing to participate, the representativeness of the trial must
still be considered during design.

Most of the methods used in this report are of the non-parametric or semi non-
parametric type. These seem to be valuable, especially for the case of trend com-
ponent estimation. The estimation may be regarded as a signal extraction in which
we condition on the full set of data and apply smoothness constraints to obtain
the estimates. Alternatively the trend and seasonal components could, in princi-
ple, be estimated by postulating a stochastic model for the trend, maybe a random
walk, and a stochastic component for the diurnal variation, maybe a seasonal walk
(Madsen 1995). Estimation would then be feasible if the noise could be assumed to
concentrate around zero. Although the estimates will not be smooth the approach
is similar to smoothing in that the estimates have reduced variance compared with
the original data. Hence this kind of smoother could probably also be used together
with the backfitting algorithm. In this context also the Kalman smoother seems
interesting (Shumway 1988, p. 176-7).

In some cases information criteria are used for bandwidth selection. Cross-validation
is not used since it is too computational demanding. It is interesting to note that
the bandwidth selected is strongly dependent on whether the temporal correlation of
the residuals is modelled or not. Since the information criteria are likelihood based
at least one of the models considered should have white noise residuals, i.e. the true
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model should be among those considered, for the selection to work appropriately. A
more intuitive explanation of this is also available, it is based on leave-one-out cross-
validation (CV), for which the GVC and AIC are approximations. If the bandwidth
selection is based on CV, and if the residuals are positive correlated, the CV will
tend to select a very small bandwidth (Friedman 1984, p. 10). This is exactly what
happens on Figure 4.21; a bandwidth of one percent is selected by GCV and AIC.

BIC leads to totally different bandwidths than AIC and GCV. A closer look on the
assumptions on which BIC (Schwarz 1978) is based may explain why. The assump-
tions on the a priori probability of the models, i.e. bandwidths in this case, imply
mutual orthogonality of the conditional a priori distribution of the model parame-
ters, i.e. trend component and parameters in the linear part of the model. Since any
bandwidth can be selected an infinity of different conditional a priori distributions
of model parameters exists, and since the equivalent number of parameters is finite,
these can not all be orthogonal. This implies that the assumptions on which BIC is
based cannot be fulfilled in the case of bandwidth selection.



Appendix A

Data Tables

Date Degree days (°C/h)
30 Jun. 95 0
31 Jul. 95 -
31 Aug. 95 -
30 Sep. 95 38
31 Oct. 95 103
30 Nov. 95 388
31 Dec. 95 566
31 Jan. 96 573
29 Feb. 96 564
31 Mar. 96 520
30 Apr. 96 250
31 May. 96 170
30 Jun. 96 0
31 Jul. 96 -
31 Aug. 96 -
30 Sep. 96 46
31 Oct. 96 193
30 Nov. 96 352
31 Dec. 96 538
31 Jan. 97 555
28 Feb. 97 393
31 Mar. 97 405

Table A.1. Total degree days by month, backwards in time.
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Substation
1667 4284

Date | No. Cum. | No. Cum.
23 Aug. 2 2 0 0
26 Aug. | 11 13 5 5
27 Aug. 6 19 5 10
28 Aug. | 3 22| 3 13
29 Aug. | 13 35 4 17
30 Aug. 8 43 0 17
1 Sep. 0 43 1 18
2 Sep. 9 52 8 26
3 Sep. 7 59 0 26
4 Sep. 3 62 5 31
5 Sep. 6 68 4 35
6 Sep. 2 70 4 39
8 Sep. 2 72 0 39
9 Sep. 5 7 7 46
10 Sep. 3 80 6 52
11 Sep. 5 85 0 52
12 Sep. | 10 95 9 61
13 Sep. 4 99 0 61
16 Sep. 2 101 6 67
17 Sep. 3 104 6 73
18 Sep. 6 110 7 80
19 Sep. 2 112 5 85
208ep.| 0 112 1 86
23 Sep. 2 114 5 91
24 Sep. 1 115 2 93
25 Sep. 0 115 3 96
26 Sep. 1 116 1 97
29 Sep. 0 116 0 97
30 Sep. 1 117 3 100
1 Oct. 0 117 3 103
2 Oct. 1 118 0 103
3 Oct. 1 119 1 104
8 Oct. 0 119 1 105
16 Oct. 1 120 0 105

Table A.2. Number of visits on induvidual dates.



Appendix B

Decomposition of the Individual
Time Series

This appendix contains plots of the decompositions of the individual time series
addressed in Section 4.1. Seasonal diagnostic plots are also included.

Figures B.1, B.2, B.3, and B.4 show the original data and the components. In
these figures the vertical bar on the right of the plots covers the same range on
the individual figures. The horizontal line at the bottom of each plot indicates the
period in which the households were visited, cf. Section 2.1, the same period one
year before is indicated by a dotted line.

Figures B.5, B.6, B.7, and B.8 show the corresponding seasonal diagnostic plots.
They show, for each hour of the day (printed on top of each sub-plot), the detrended
data plotted against the date, together with the seasonal smooth. On each page the
range of the axes are identical. Only data corresponding to normal working days
are shown, plots corresponding to the other types of days (see the beginning of
Chaper 4) are simillar, but with fewer data points.
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Figure B.1. Series 1325, together with trend, seasonal, and remainder components.



Appendiz B Decomposition of the Individual Time Series 67

0S¢ 0se 0St 0S 00L 09 0 0S-

1667
\ \ \
31 May 1996 08 Sep 1996 17 Dec 1996 27 Mar 1997

\
21 Feb 1996

I
13 Nov 1995

I
05 Aug 1995

09} oct 08 09 0 0G-
elep pual [euoseas lapurews

Figure B.2. Series 1667, together with trend, seasonal, and remainder components.
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Figure B.3. Series 2588, together with trend, seasonal, and remainder components.
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Figure B.4. Series 4284, together with trend, seasonal, and remainder components.
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1325

Figure B.5. Seasonal diagnostic plot for substation 1325 (working days).
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1667

71

Figure B.6. Seasonal diagnostic plot for substation 1667 (working days).
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2588

Figure B.7. Seasonal diagnostic plot for substation 2588 (working days).
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4284
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Figure B.8. Seasonal diagnostic plot for substation 4284 (working days).
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Appendix C

Modelling the Dependence on
Climate

This appendix contains plots related to Section 4.5.2 and model (4.13).

e Figures C.1, C.2, C.3, and C.4 show the estimated diurnal profiles based on
(4.13) using a bandwidth of 10%. The results are presented as the percent-wise
deviation from the daily level plotted against the time of day. On the plots
the vertical lines not extended beyond 00 — 24 indicate the mean of the diurnal
profile with which they share line type (solid or dotted). The calculation of
means are performed on the log-scale.

e Figures C.5, C.6, C.7, and C.8 are diagnostic plots of the residuals, after fit-
ting (4.13) using a bandwidth of 10%. For a description of box plots and nor-
mal quantile-quantile plots, see (Statistical Sciences 1993, Statistical Sciences
1995). The sample autocorrelation functions shown are calculated after fitting
a zero mean autoregressive model with non-zero parameters at lags 1, 24, and
25.

e Figure C.9 displays the mean and median together with 95% percentile and
standard normal intervals based on the bootstrap replicates of the estimate of
the trend component, cf. page 54 (Section 4.5.2), for substation 4284.
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Figure C.1. Diurnal profiles: Comparison of active (solid) and control (dotted) for
working days and for both types of substations and for the first (before 1 Oct. 1996)
and last (after 1 Oct. 1996) period.
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Figure C.2. Diurnal profiles: Comparison of active (solid) and control (dotted) for
non-working days and for both types of substations and for the first (before 1 Oct.
1996) and last (after 1 Oct. 1996) period.
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Figure C.3. Diurnal profiles: Comparison of periods for working days for the indi-

vidual substations. Before 1 Oct. 1996 (dotted) and after 1 Oct. 1996 (solid).
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Figure C.4. Diurnal profiles: Comparison of periods for non-working days for the
individual substations. Before 1 Oct. 1996 (dotted) and after 1 Oct. 1996 (solid).
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Figure C.5. Residual diagnostic plots for substation 1325.
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Figure C.6. Residual diagnostic plots for substation 1667.
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Figure C.7. Residual diagnostic plots for substation 2588.
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Figure C.9. Mean (solid) and median (dotted) together with 95% percentile (dotted)
and standard normal (solid) intervals of the estimate of the trend component (log-
scale) of substation 4284.



Appendix D

Grouping of Substations

Prior to the startup of the trial the power consumption, during the period Septem-
ber 1995 until January 1996, of 24 substations was analyzed in order to identify
substations with similar patterns and sizes of consumption, cf. (Nielsen 1996). An
english version of this reference is included in this appendix.

The S-PLUS functions mentioned in Section D.2.1 are described in (Statistical Sciences
1995).

Summary

The power consumption during the period September 1995 until January 1996 for
24 substations is analysed with the purpose of identifying substations with similar
pattern and sizes of consumption. The fraction of apartments and the fraction of
households using electrical heating are also included in the analysis. It is the purpose
to identify four or five groups, and it is sufficient that each group consists of two
substations.

For substations with a low fraction of households using electrical heating (below
10%), and without apartments connected, two groups are identified; (i) substations
1667 and 2588, and (ii) 1325 and 4284. For substations with a high fraction of
households using electrical heating (above 96%), and without apartments connected,
the group 4892 and 5128 is obtained. Finally, for substations with only apartments
connected the group 2370 and 2686 is obtained.
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D.1 Introduction

This note has been prepared during the planning stage of a trial in which electricity
consumers connected to one or more substations are offered devices and/or advise
with the purpose of reducing or rearranging their power consumption. For interpre-
tation of the results it is desirable to be able to compare the results from substations
which (actively) participate in the trial with results from similar substations where
the consumers have not been offered devices and/or advise.

Before such a trial is initiated it is suitable to identify substations with similar
pattern and size of consumption. In this note it is described how cluster analysis
has been applied in order to identify such groups.

D.2 Approach

Hourly measurements, at the 24 substations, of the power consumption during the
period September 1995 until January 1996 (including both) are used, cf. Section D.5.
This period is chosen since it (i) agrees with the period during which the trial is
expected to be performed, and (ii) outlying observations seem to be absent during
the period.

Furthermore the fraction of households using electrical heating and the fraction of
apartments are used. Note that apartments with electrical heating installed are not
present in the data set.

The substations are first grouped based on the fractions. Hereafter the grouping is
performed based on the measurements of power consumption. The final grouping is
obtained by requiring that substations in the same group must be grouped together
by both methods.

D.2.1 Cluster Analysis

In cluster analysis a number of units are grouped based on quantitative features
(actually qualitative features can also be handled, but this is not considered here).
First the distance, in the space defined by the features, between the units is calcu-
lated. In this case the Euclidean distance is used. The grouping is now obtained by
merging the two units closest to each other. These are now regarded as one unit,
called a cluster, and the procedure is repeated until all units are grouped into one
cluster.

When the distance between a cluster and a unit or a cluster are calculated, one
possibility is to calculate the average distance. However, in this note the maximal



Appendiz D Grouping of Substations 85

distance between units in clusters is used. This method is chosen since it increases
the degree of similarity within clusters.

The computer program S-PLUS version 3.2 (functions dist() and hclust()) is
used.

D.3 Results

On basis of the fraction of apartments and fraction of households using electrical
heating, both measured in percent, the groups 1-8 shown on Figure D.1 are identi-
fied. Note that only groups 1-4 consists of three or more substations.

A plot like the one shown in Figure D.1 is called a cluster tree. The horizontal line
segments indicate levels at which units or clusters are combined. E.g. substations
5128 and 5324 are combined into one cluster at level 1% (indicated on the axis to
the left of the tree).

In Section D.5 the (i) daily mean, (ii) daily 5% quantile, and (iii) difference between
the daily 95% and 5% quantiles (denoted amplitude in the following) are plotted
against the number of days since September 1, 1995. Based on these time series the
substations have been characterized by:

The overall mean,

the slope of the daily mean,

the mean of the daily 5% quantile,

the slope of the daily 5% quantile,

and the mean of daily amplitude.

The summary statistics are calculated based on data until 20 December 1995, since
this resulted in well defined slopes. Note that the individual time series are not
standardized. For this reason the analysis will tend to group substations with similar
sizes of consumption, which is appropriate for the concept of the trial outlined in
Section D.1.

The summary statistics (not the time series but the overall mean, etc.) are standard-
ized to zero mean and unit standard deviation. The result of the following cluster
analysis is displayed in Figure D.2. Also, in the figure the grouping obtained based
on the fraction of apartments and fraction of households using electrical heating is
indicated.

If a maximal distance of 2.0 is used, four groups of substations are obtained. For
substations where a low fraction (10% or less) of the households use electrical heating
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and with no apartments the groups (i) 1667 and 2588, and (ii) 1325 and 4284 are
identified. For substations where a high fraction (96% or more) of the households use
electrical heating and with no apartments the group 4892 and 5128 are identified.
Finally, for substations with only apartments connected the group 2370 and 2686
are identified.

From Figure D.2 it is revealed that, if the campaign is to be executed at two substa-
tions only, the group where a high fraction of households use electrical heating (4892,
5128), and the group consisting of apartments (2370, 2686), should be omitted. The
remaining groups are obtained using a maximal distance below 1.

If the groups identified are compared with the time series plots in Appendix D.5 it
is revealed that the substations selected are very similar within the groups. This is
especially true for the groups (1325, 4284) and (1667, 2588).

D.4 Conclusion

Using Cluster Analysis four pairs of similar substations are identified among 24
substations. If only two pairs are needed the similarity is markedly higher.
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Figure D.1. Cluster tree based on the fraction of households using electrical heating
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D.5 Data

The primary data is hourly measurements of the power consumption (kWh) for 24
substations measured during the period September 1995 until January 1996 (includ-
ing both). On the following pages

e the daily mean,

e the daily 5% quantile,

e and the difference between the daily 95% and 5% quantiles

are plotted against the number of days since 1 September 1995. The substation
identification numbers are placed over each sub-plot.
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